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CHAPTER

ONE

THE MMGROUP API REFERENCE

1.1 Introduction

In the area of mathematics known as group theory, the Monster group M is the largest finite sporadic simple group. It
has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 =
808.017.424.794.512.875.886.459.904.961.710.757.005.754.368.000.000.000 .

The Monster group has first been constructed by Griess [Gri82]. That construction has been simplified by Conway
[Con85]. For more information about the Monster group we refer to [Wik23].

The mmgroup package is a Python implementation of Conway’s construction [Con85] of the Monster group M. Its is
the first implementation of the Monster group where arbitrary operations in that group can effectively be performed.
On the author’s PC (Intel i7-8750H at 4 GHz running on 64-bit Windows) the group multiplication in M takes less than
30 ms. This is more than five orders of magnitude faster than estimated in 2013 in [Wil13].

The Monster group M has a rational representation 𝜌 of dimension 196884, see [Con85]. In that representation the
denominators of the matrix coefficients are powers of two. So reducing these coefficients modulo a small odd prime 𝑝
leads to a representation 𝜌𝑝 of M over the finite field F𝑝.

The mmgroup package uses highly optimized C programs for calculating in such representations 𝜌𝑝 of the Monster M.
The main ingredient for speeding up the computation in M is the calculation and the analysis of the images of certain
vectors in 𝜌𝑝 that are called 2A axes in [Con85].

In the description of the mmgroup package we use the notation in [Sey20], where an explicit generating set of the
Monster M is given. For a mathematical description of the implementation we refer to [Sey22].

1.2 Installation and test

1.2.1 Installation on 64-bit Windows

For installing the mmgroup package on a 64-bit Windows system, python 3 must be installed. Then type:

pip install mmgroup
pip install pytest
python -m pytest --pyargs mmgroup -m "not slow"

The last command tests the installation.

1
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1.2.2 Installation on Linux and macOS with a 64-bit x86 CPU

For installing the mmgroup package on a Linux or macOS system, python 3 must be installed. Then type:

pip3 install mmgroup
pip3 install pytest
python3 -m pytest --pyargs mmgroup -m "not slow"

The last command tests the installation.

1.2.3 Other platforms

For other platforms the package must be compiled from a source distribution. Therefore the cibuildwheel tool may be
used, see Building the mmgroup package with cibuildwheel.

A general description of the build process is given in the Guide for developers of the project documentation.

1.3 Basic structures

Conway’s construction of the Monster group starts with the extended binary Golay code 𝒞, which is a 12-dimensional
linear subspace of the 24-dimensional vector space F24

2 . The Golay code has Hamming distance 8. Its automorphism
group is the Mathieu group 𝑀24, which is a simple group operating as a permutation group on 24 points. These points
are identified with the basis vectors of F24

2 .

Module mmgroup contains fast C routines for computing with the Golay code 𝒞, its cocode 𝒞*, and the Mathieu group
𝑀24. There are Python classes for a more convenient handling of these objects that wrap these C functions; these
classes are described in this section.

In this section we also describe Python classes modelling more complicated mathematical structures. One of these
structures is the Parker loop 𝒫 , which is a non-associative loop that can be constructed as a double cover of the Golay
code 𝒞. We also consider a group AutSt𝒫 of automorphisms of 𝒫 , which has structure 212.𝑀24. Here the normal
subgroup of AutSt𝒫 or order 212 is isomorphic to the Golay cocode 𝒞*.

Another important ingredient of the construction of the Monster is the Leech lattice Λ, which is the densest lattice in
dimension 24. We also consider the Leech lattice modulo 2, which we denote by Λ/2Λ, and the automorphism group
Co1 of Λ/2Λ, which is simple.

1.3.1 The Golay code and its cocode

We deal with the Golay code and its cocode.

Let Ω̃ be the set of integers {𝑖 ∈ Z | 0 ≤ 𝑖 < 24} of size 24 and construct the vector space 𝒱 = F24
2 as

∏︀
𝑖∈Ω̃ F2. In

this document elements of 𝒱 are called bit vectors. We represent bit vectors as instances of class GcVector.

We identify the power set of Ω̃ with the vector space 𝒱 = F24
2 by mapping each subset of Ω̃ to its characteristic function,

which is a bit vector in 𝒱 . So we may talk about union and intersection of bit vectors in a natural way and use the python
operators | and & for these operations as usual. We use the + operator for vector addition of bit vectors. Bit vectors are
numbered from 0 to 0xffffff, with bit i of that number corresponding to the i-th unit vector.

The Golay code 𝒞 is a 12-dimensional linear subspace of 𝒱 such that a nonzero vector in 𝒞 has weight at least 8. This
characterizes the Golay code up to permutation. In this package we chose a specific basis of the Golay code that satisfies
the requirements in [Sey20], see The basis of the Golay code and of its cocode for details. We represent Golay code
words as instances of class GCode. Golay code words of weight 8 and 12 are called octads and dodecads, respectively.
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We stress that class GCode is not a subclass of class GcVector. Instances of these two classes are numbered in a
different way. Golay code words are numbered from 0 to 0xfff with bit i of that number corresponding to the i-th
basis vector of the Golay code. See The basis of the Golay code and of its cocode for the chosen basis of the Golay
code.

The Golay cocode 𝒞* is the 12-dimensional quotient space F24
2 /𝒞. For any 𝛿 ∈ 𝒞* the weight of 𝛿 is the weight of its

lightest representative in F24
2 . That weight is at most 4. There is a unique lightest representative it the weight is less

than 4, and there are six mutually disjoint lightest representatives of an element of weight 4. A partition of F24
2 given

by such a set of disjoint representatives is called a tetrad. We represent elements of the cocode of the Golay code as
instances of class Cocode. Cocode elements are numbered from 0 to 0xfff with bit i of that number corresponding
to the i-th basis vector of the cocode. Our basis of the cocode is the reciprocal basis of the basis of the Golay code,
see The basis of the Golay code and of its cocode for details.

The scalar product of a Golay code word and a cocode element is the parity of the intersection of the Golay code word
and any representative of the cocode element. If g is an instance of class GCode and d is an instance of class Cocode
then g & d is an instance of class Parity. Here class Parity models an integer modulo 2, which is also considered
as the parity of a bit vector. Standard operations, e.g. (-1)**p, work as expected for an instance p of class Parity.

The standard function len(x) returns the (minimal) weight |x| of an instance x of class GcVector, GCode or Cocode.
For instances g1, g2, g3 of class GCode, the expression g1 & g2 is an instance of class Cocode and g1 & g2 & g3
an instance of class Parity; these values have a natural interpretations as bitwise intersections. g1/4 is a shorthand
for Parity(len(g1)/4); and (g1 & g2)/2 is a shorthand for Parity(len(g1 & g2)/2). These two expressions
are called the power map and the commutator, respectively, in [Asc86]; and g1 & g2 & g3 is called the associator in
[Asc86].

The numbering of the Golay code words and of the cocode elements is important for indexing some generators of M
and also some basis vectors in the representations 𝜌𝑝 of M.

class mmgroup.GCode(value)
This class models a code word of the Golay code.

The Golay code is a binary [24, 12, 8] code. So there are 212 code words, each word is 24 bit long, and the
Hamming distance between two different code words is at least 8.

The 212 Golay code words are numbered from 0 to 0xfff. Bit i in that number refers to the coefficient of the
i-th basis vector of the Golay code, which may be 0 or 1.

Parameters
value (see table below for legal types) – This is the value of the Golay code word to
be returned.

Returns
A Golay code vector

Return type
an instance of class GCode

Raise

• TypeError if type(value) is not in the table given below.

• ValueError if value cannot be converted to an instance of class GCode.

Depending on its type parameter value is interpreted as follows:
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Table 1: Legal types for constructor of class GCode

type Evaluates to
int Here the code word with number value is returned. 0 <= value < 0x1000 must

hold.
list of int A list of integers 0 <= i < 24 is interpreted as a list of bit positions to be set in a

bit vector. The Golay code word corresponding to that bit vector is returned. Up to 3
erroneous bits are corrected.

class GCode A deep copy of parameter value is returned.
class PLoop The Parker loop element value is converted to a Golay code word (by dropping its

sign) and returned.
class GcVector The bit vector value of type GcVector is converted to a Golay code word and returned.

Up to 3 erroneous bits in that vector are corrected.
class XLeech2 The Golay code part of the XLeech2 object is converted to a Golay code word and

returned.
str

Create random element depending on the string

'r': Create arbitrary Golay code word

Standard operations

Addition of Golay code words and scalar multiplication (with scalars of type int or Parity) are done as usual.

The bitwise and operator &means bitwise and of two code words of type GCode. The result of such an operation
on two Golay code words is a Golay cocode word of type Cocode.

The bitwise & operator of a Golay code word and a Golay cocode word of type Cocode is not well defined as a
bit vector, but it has a well-defined parity. So in this case the result of the & operator is a parity object of type
Parity.

For the bitwise & operator bit vectors of type GcVector, see class GcVector.

The ~ operator means bitwise complement as usual; it returns the complemented code word, which is also of
type GCode.

Standard functions

len(g) returns the bit weight of the Golay code word g, i.e. the number of bits set in the word g.

Special functions

Let g1, g2, and g3 be Golay code vectors of type GCode.

The expression g1/4 is a shorthand for Parity(len(g1)/4). It returns len(g1)/4modulo 2 as a parity object
of type Parity.

GcVector(g1 & g2) returns the bitwise intersection of g1 and g2 as a bit vector of type GcVector.

(g1 & g2)/2 is a shorthand for Parity(len(GcVector(g1 & g2))/2). It returns the halved bit weight of
g1 & g2 modulo 2 as a parity object of type Parity. This value is also called the commutator of g1 and g2.

g1 & g2 & g3 returns the parity of the bitwise intersection of g1, g2, and g3 as a parity object of type Parity.
This value is also called the associator of g1, g2, and g3.

abs(g1) is a shorthand for abs(PLoop(g1)), see class PLoop for details.

property bit_list

Return the ordered list of positions of bits being set
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property bits

Return the Golay code word as a 24-bit vector.

The function returns a list with 24 entries equal to 0 or 1.

property gcode

Return the number of the Golay code word.

Same as property ord.

property octad

Return number of octad of the Golay code word as an octad.

Complements of octads are also accepted as octads. We have 0 <= o < 759 for the returned
number o.

Raise

• ValueError if the Golay code word is not an octad.

property ord

Return the number of the Golay code word.

We have 0 <= i < 0x1000 for the returned number i.

split()

Split the Golay code word g.

Returns
A triple (0, eo, v) with g = Omega * eo + v.

Here Omega is the Golay code word containing one bits only, eo is 0 or 1, and v is a Golay code word of
type GCode with 0 <= v1.ord < 0x800.

This method is for compatibility with the corresponding method in class PLoop.

split_octad()

Split an octad from the Golay code word g.

Returns
A triple (0, eo, o) with g = Omega * eo + o.

Here Omega is the Golay code word containing one bits only, eo is 0 or 1, and v is a Golay code word of
type GCode which is either the zero code word or an octad, i.e. a code word of weight 8.

This method is for compatibility with the corresponding method in class PLoop.

Raise

• ValueError if this is not possible.

theta(g2=None)
Return cocycle of Golay code words.

The cocycle theta maps a pair of Golay code words to an integer modulo 2. It is linear in its second
argument, so it may also be considered as a mapping from the Golay code to the cocode of the Golay code.

Parameters
g2 – None (default) or another Golay code word of type GCode.

Returns
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• If g2 is a code word of type GCode, we return the value g1.theta(g2) = theta(g1,
g2) as a Parity object.

• If g2 is None (default), we return the value g1.theta() = theta(g1) as a Cocode ob-
ject. Note that g1.theta(g2) == g1.theta() & g2 .

The importance of the theta function comes from the fact that the multiplication of elements of the Parker
loop is based on the cocycle. We embed the set of Golay code words into the set of positive Parker loop
elements, which are instances of class PLoop.

Let g1 and g2 be Golay code words of type GCode. Then PLoop(g1) and PLoop(g2) are the corresponding
positive Parker loop elements, and g1.theta(g2) is an integer modulo 2 of type Parity. We have:

PLoop(g1) * PLoop(g2) == (-1)**g1.theta(g2) * PLoop(g1 + g2) .

property vector

Return bit vector corresponding to the Golay code word as an int.

We have 0 <= v < 0x1000000 for the returned number v. Bit i of the number v is the i-th coordinate
of the corresponding bit vector.

class mmgroup.GcVector(value)
Models a 24-bit vector in the underlying space of the Golay code.

The 224 bit vectors are numbered from 0 to 0xffffff. Bit i in that number refers to the coefficient of the i-th
basis vector of the vector space, which may be 0 or 1.

Parameters
value (see table below for legal types) – This is the value of the bit vector to be re-
turned.

Returns
A bit vector of 24 bit length.

Return type
an instance of class GcVector

Raise

• TypeError if type(value) is not in the table given above.

• ValueError if value cannot be converted to an instance of class GcVector.

Depending on its type parameter value is interpreted as follows:

Table 2: Legal types for constructor of class GcVector

type Evaluates to
int Here the bit vector with number value is returned. 0 <= value < 0x1000000 must

hold.
list of int A list of integers 0 <= i < 24 is interpreted as a list of bit positions to be set in a bit

vector. That bit vector is returned.
class GCode The bit vector corresponding to the Golay code word value is returned.
class PLoop The Parker loop element value is converted to a Golay code word (by dropping its

sign) and then to a bit vector. That bit vector is returned.
class GcVector A deep copy of parameter value is returned.
str

Create random element depending on the string

'r': Create arbitrary bit vector
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Standard operations

Addition of bit vectors and scalar multiplication (with scalars of type int or Parity) are done as usual. The
sum of a bit vector and a Golay code word (of type GCode) is a bit vector. The sum of a bit vector and a cocode
word (of type Cocode) is a cocode word of type Cocode.

The bitwise and operators &, |, and ~ operate on two bit vectors as expected. If the other operand is a Golay code
vector (of type GCode) then it is converted to a bit vector.

Standard functions

len(v) returns the bit weight of the bit vector v, i.e. the number of bits set in the vector v.

property bit_list

Return the ordered list of positions of bits being set

property bits

Return the Golay code word as a 24-bit vector.

Returns a list with 24 entries equal to 0 or 1.

property cocode

Return number of the cocode word corresponding to the vector.

property gcode

Return number of Golay code word corresponding to the bit vector

Raise

• ValueError if the bit vector is not an Golay code word.

property octad

If the bit vector is an octad, return the number of that octad

Complements of octads are also accepted as octads.

Raise

• ValueError if the bit vector is not an octad.

property ord

Return the number of the bit vector.

We have 0 <= i < 0x1000000 for the returned number i.

syndrome(i=None)
Return syndrome of cocode element as a bit vector.

Parameters
i – None (default) or an integer 0 <= i < 24 used to select a syndrome.

Returns
Syndrome of a Golay cocode element as a bit vector of type GcVector.

Raise

• ValueError if argument i is None and the syndrome is not unique.

v.syndrome(i) is equivalent to Cocode(v).syndrome(i).

syndrome_list(i=None)
Return syndrome of cocode element as list of bit positions.

Parameters
i – None (default) or an integer 0 <= i < 24 used to select a syndrome.
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Returns
Syndrome of a Golay cocode element as a list of at most four bit positions.

Raise

• ValueError if argument i is None and the syndrome is not unique.

The syndrome of the Golay cocode element is calculated in the same way as in method syndrome. But
here the result is returned as an ordered list of bit positions corresponding to the bits which are set in the
syndrome.

v.syndrome_list(i) is equivalent to Cocode(v).syndrome_list(i).

property vector

Return the number of the bit vector.

We have 0 <= i < 0x1000000 for the returned number i.

Same as property ord.

class mmgroup.Cocode(value)
This class models an element of the cocode of the Golay code.

The Golay code is a binary [24, 12, 8] code. So its cocode has 212 elements, each of it is a 24 bit long word
(modulo the Golay code).

The 212 Golay cocode elements are numbered from 0 to 0xfff. Bit i in that number refers to the coefficient of
the i-th basis vector of the Golay cocode, which may be 0 or 1. The chosen basis of the cocode is the reciprocal
basis of the chosen basis of the Golay code.

Parameters
value (see table below for legal types) – This is the value of the Golay cocode word
to be returned.

Returns
A Golay cocode element

Return type
an instance of class Cocode

Raise

• TypeError if type(value) is not in the table given below.

Depending on its type parameter value is interpreted as follows:
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Table 3: Legal types for constructor of class Cocode

type Evaluates to
int Here the cocode element with number value is returned. 0 <= value <= 0x1000

must hold.
list of int A list of integers 0 <= i < 24 is interpreted as a list of bit positions to be set in a bit

vector. The cocode word corresponding to that bit vector is returned.
class Cocode A deep copy of parameter value is returned.
class XLeech2 The cocode part of the XLeech2 object is converted to a cocode element and returned.
str

Create random element depending on the string

'r': Create arbitrary cocode element
'e': Create an even cocode element
'o': Create an odd cocode element

Standard operations

Addition of cocode elements and scalar multiplication (with scalars of type int or Parity) are done as usual.

g & c and c & g are legal operations for a Golay code element g of type GCode and a cocode element c of type
Cocode. The result of this operation is not well defined as a bit vector, but it has a well-defined parity. Thus g
& c returns a parity object of type Parity.

Standard functions

Let c be a cocode element of type Cocode. len(c) returns the bit weight of a shortest representative of the
Golay code element c.

Special functions

The expression c % 2 is a shorthand for Parity(len(c)). It returns the parity of c as a parity object of type
Parity.

property cocode

Return the number of the cocode element.

We have 0 <= i < 0x1000 for the returned number i.

Same as property ord.

property ord

Return the number of the cocode element.

We have 0 <= i < 0x1000 for the returned number i.

property parity

Return parity of the cocode element as a Parity object.

syndrome(i=None)
Return syndrome of cocode element as a bit vector.

Parameters
i – None (default) or an integer 0 <= i < 24 used to select a syndrome.

Returns
Syndrome of a Golay cocode element as a bit vector of type GcVector.
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Raise

• ValueError if argument i is None and the syndrome is not unique.

Any Golay cocode element has either a unique shortest representative of bit weight <= 3 or precisely six
shortest representatives of bit weight 4 which form a partition of the underlying set of the code. Such a
partition is called a tetrad.

In coding theory, a shortest representative of a cocode element is called a syndrome.

If the syndrome is unique, the function returns that syndrome. Otherwise it returns the syndrome containing
bit at position i.

syndrome_list(i=None)
Return syndrome of cocode element as list of bit positions.

Parameters
i – None (default) or an integer 0 <= i < 24 used to select a syndrome.

Returns
Syndrome of a Golay cocode element as a list of at most four bit positions.

Raise

• ValueError if argument i is None and the syndrome is not unique.

The syndrome of the Golay cocode element is calculated in the same way as in method syndrome. But
here the result is returned as an ordered list of bit positions corresponding to the bits which are set in the
syndrome.

syndromes_llist()

Return shortest syndromes of cocode element as list of lists.

The function returns the list of all shortest representatives of the cocode element as a list ll of lists. Each
entry of ll corresponds to a shortest representative. Such an entry is an ordered list of bit positions corre-
sponding to the bits which are set in the representative. Output ll is sorted in natural order.

class mmgroup.Parity(value)
This class models the parity of a bit vector.

As one might expect, the parity of a bit vector may be odd or even, and it is an element of the field GF(2) of two
elements.

This means that arithmetic operations +, -, and *work as expected on instances of class Parity, or on instances
of this class combined with integers.

The values 1**p and (-1)**p are defined as usual for an object p of class Parity. Similarly, g**p is defined
if g is an element of a group defined in this package and has order 1 or 2. More precisely, g must be an instance
of class AbstractGroupWord here.

Bitwise operations &, |, and ^ are illegal on instances of class Parity.

Parity(x) is defined if x an integer, an instance of class Parity, or an instance of any class defined is this
package which has a natural parity, e.g. an instance of class GcVector or Cocode.

int(p) evaluates to 0 or 1 for an instance of class Parity.

Implementation remarks

If an object x has an attribute or a property parity then Parity(x)means Parity(x.parity) and
x + p means Parity(x) + p for any instance p of class Parity.
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If an object x has an attribute or a property parity_class then x * p and p * x mean
Parity(parity_class(x) * int(p)). If that attribute or a property has value True then x *
p and p * x mean Parity(x * int(P)).

property ord

Return 1 if the parity is odd and 0 if it is even

1.3.2 The Parker loop

We deal with the Parker loop, which is a non-associative Moufang loop.

The Parker loop is written multiplicatively its elements can be represented as pairs in the set 𝒫 = 𝒞 × F2, see e.g.
[Asc86], [Con85]. We also write 1 for the neutral element (0, 0) ∈ 𝒞×F2 = 𝒫 of the Parker loop and -1 for its negative
(0, 1). Let Ω = (Ω̃, 0), where Ω̃ is the Golay code word 1,...,1. Then the center 𝑍(𝒫) of 𝒫 is {1,−1,Ω,−Ω}. An
element (𝑔, 𝑠), 𝑔 ∈ 𝒞 is called positive if 𝑠 = 0 and negative if 𝑠 = 1.

Multiplication of two Parker loop elements (𝑔1, 𝑠1), (𝑔2, 𝑠2) is given by a cocycle 𝜃 : 𝒞 × 𝒞 → F2 as follows:

(𝑔1, 𝑠1) · (𝑔2, 𝑠2) = (𝑔1 + 𝑔2, 𝑠1 + 𝑠2 + 𝜃(𝑔1, 𝑔2)).

There are several possibilities for the cocycle 𝜃. We choose a cocycle 𝜃 satisfying the requirements given by [Sey20],
see The basis of the Golay code and of its cocode for details.

We represent elements of 𝒫 as instances of class PLoop. For Golay code word g given as an instance of class GCode,
the value PLoop(g) is the positive element (g,0) of the Parker loop, and -PLoop(g) is the corresponding negative
element (g,1). The constant PLoopOne is equal to the neutral element (0,0) and the constant PLoopOmega is equal to
the central element ~PLoopOne. Here the ~means bitwise complement of the corresponding Golay code element with-
out changing the sign of a Parker loop element. Thus PLoopOmega is the positive Parker loop element corresponding
to the Golay code word containing 24 one bits. So the center 𝑍(𝒫) of 𝒫 is:

[PLoopOne, -PLoopOne, PLoopOmega, -PLoopOmega] .

Let g1, g2 be instances of class GCode. For positive elements of the Parker loop the multiplication formula given
above can be coded as follows:

PLoop(g1) * PLoop(g2) == (-1)**g1.theta(g2) * PLoop(g1 + g2) .

The elements of the Parker loop are numbered from 0 to 0x1fff. Here the numbers of the positive Parker loop elements
correspond to the numbers of the Golay code words. The numbering system for the Parker loop is also used for indexing
certain elements of the monster group M.

A transversal of 𝑍(𝒫) in 𝒫 is used for indexing certain basis vectors of the representation 𝜌 of M. Property ord of an
instance a of class PLoop returns the number of that element of the Parker loop. For indexing vectors in 𝜌 it is important
to know that (-a).ord = a.ord ^ 0x1000 and (~a).ord = a.ord ^ 0x800. Thus the Parker loop elements a
with 0 <= a.ord < 0x800 are a transversal of 𝑍(𝒫) in 𝒫 .

class mmgroup.PLoop(value=0)
This class models an element of the Parker Loop.

The Parker loop is a non-associative loop with 21+12 elements. Each element can be interpreted as a signed
Golay code word, see class GCode. Accordingly, class PLoop is a subclass of class GCode.

The loop operation is written multiplicatively. The neutral element of the loop (corresponding to the positive
zero word of the Golay code) is PLoopOne, and its negative is -PLoopOne. PLoopOmega is the (positive) element
corresponding to the all-one vector of the Golay code.

The 21+12 Parker loop elements are numbered from 0 to 0x1fff. Elements 0 to 0xfff are are positive and
corresponding to the Golay code words with the same number. The element with number 0x1000 ^ i is the
negative of the element with number i.
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Parameters
value (see table below for legal types) – This is the value of the Parker loop element
to be returned.

Returns
A Parker loop element

Return type
an instance of class PLoop

Raise

• TypeError if type(value) is not in the table given above.

• ValueError if value cannot be converted to an instance of class PLoop.

Depending on its type parameter value is interpreted as follows:

Table 4: Legal types for constructor of class PLoop

type Evaluates to
int Here the code word with number value is returned. 0 <= value < 0x2000 must

hold. We have PLoop(0) == PLoopOne, PLoop(0x1000) == -PLoopOne, and
PLoop(0x800) == ~PLoopOne == PLoopOmega.

list of int Such a list is converted to a Golay code word, see class GCode, and the corresponding
(positive) Parker loop element is returned.

class GCode The corresponding (positive) Parker loop element is returned.
class PLoop A deep copy of parameter value is returned.
class GcVector This is converted to a Golay code word, see class GCode, and the corresponding (posi-

tive) Parker loop element is returned.
class XLeech2 The Parker loop part of the XLeech2 object is returned.
str

Create random element depending on the string

'r': Create arbitrary Parker loop element

Standard operations

Let a be a Parker loop element. The multiplication operator * implements the non-associative loop operation.
Division by a Parker loop element means multiplication by its inverse, and exponentiation means repeated mul-
tiplication, with a**(-1) the loop inverse of a, as usual.

The ~ operator maps the Parker loop element a to a * PLoopOmega, leaving the sign of a unchanged.

Multiplication with the integer 1 or -1 means the multiplication with the neutral element PLoopOne or with its
negative -PLoopOne, respectively.

If any of the operations +, - or & is applied to a Parker loop element, that element is converted to a Golay code
word of type GCode, ignoring the sign. This conversion also takes place if a Parker loop element is multiplied or
divided by an integer different from 1 or -1.

Standard functions

len(a) is a shorthand for len(GCode(a)). Here function GCode(a) converts a to a Golay code word of type
GCode.

abs(a) returns the element in the set {a, -a} which is positive.
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property ord

Return the number of the Parker loop element.

We have 0 <= i < 0x2000 for the returned number i.

parity_class

alias of GCode

property sign

Return the sign of the Parker loop element.

This is 1 for a positive and -1 for a negative element.

split()

Split sign and Omega from Parker loop element a.

Returns
a triple (es, eo, v) with a = (-1)**e1 * PLoopOmega**eo * v .

Here v is the unique (positive) element of the Parker loop of type PLoop with 0 <= v.ord < 0x800
satisfying that equation. es and eo are 0 or 1.

split_octad()

Split Parker loop element a into central element and octad

Returns
a triple (es, eo, o) with a = (-1)**e1 * PLoopOmega**eo * o.

Here o is either the neutral Parker loop element PLoopOne or Parker loop element corresponding to a
positive octad. es and eo are 0 or 1. An octad is a Golay code word (of type GCode) of weight 8.

Raise

• Raise ValueError if this is not possible.

mmgroup.PLoopZ(e1=0, eo=0)
Return a specific central element of the Parker loop.

Parameters

• e1 (int) – Sign, the sign of the element will be (-1)**e1

• eo (int) – Exponent for PLoopOmega, default is 0

Returns
The central element (-1)**e1 * PLoopOmega**eo of the Parker loop.

Return type
an instance of class PLoop.

Here PLoopOmega is the positive element of the Parker loop corresponding to the Golay code word 1,...,1.

e1 and eo may also be parity objects of type Parity.
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1.3.3 Octads and suboctads

We deal with octads and certain subsets of octads called suboctads.

An octad is a Golay code word of weight 8. The Golay code has 759 octads. A signed octad is a Parker loop element
corresponding to an octad or a complement of an octad. Signed octads are used for indexing some unit vectors of the
representation 𝜌 of the monster M.

Function Octad() returns a signed octad as an instance of class PLoop. Arguments of function Octad() are interpreted
in the same way as arguments of the constructor for class PLoop, but the function raises ValueError if the result is not
a (possibly complemented) signed octad.

We use some lexical order for numbering the 759 octads, which we do not describe in detail. Due to the well-known
properties of the Golay code we can create a random octad and display its number as follows:

from random import sample
from mmgroup import Octad
# Select 5 random integers between 0 and 23
int_list = sample(range(24), 5)
# Complete these 5 integers to a (unique) octad o
o = Octad(int_list)
# Display octad o and its number
print("Octad", o.bit_list, "has number", o.octad)

A suboctad of an octad o is an element of the Golay cocode 𝒞* of even parity which can be represented as a subset of
o. Each octad has 64 suboctads. A pair (octad, suboctad) is used for indexing some basis vectors in the representation
𝜌. function SubOctad creates a suboctad as an instance of class XLeech2 from such a pair. Function SubOctad takes
two arguments octad and suboctad. The first argument evaluates to a signed octad as in function Octad(). The
second argument evaluates to a suboctad, see function SubOctad for details.

The raison d’etre of a suboctad is indexing a basis vector in the representation 𝜌. For this purpose we need a pair of
integers refering to the octad and the suboctad. For an instance so of class XLeech2 that pair is given as the pair of the
last two integers in so.vector_tuple().

For an octad o and a suboctad s precisely one of the pairs (o,s) and (~o,s) is actually used as an index for 𝜌. The
pair (~o,s) is used if the cocode element corresponding to s has minimum weight 2; the pair (o,s) is used if that
element has minimum weight 0 or 4. See [Con85] or [Sey20] for background. In this implementation both, (o,s) and
(~o,s), refer to the same basis vector of 𝜌.

mmgroup.Octad(octad)
Return a (signed) octad as an element of the Parker loop.

Parameters
octad (see table below for legal types) – the value of the octad to be returned.

Returns
a (signed) octad

Return type
an instance of class PLoop

Raise

• TypeError if type(octad) is not in the table given above.

• ValueError if octad cannot be converted to a (possibly negated and complemented) octad.

Depending on its type parameter octad is interpreted as follows:
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Table 5: Legal types for parameter octad

type Evaluates to
int Here the (positive) octad with number octad is returned. There are 759 octads in the

Golay code. So 0 <= octad < 759 must hold.
list of int Such a list is converted to a Golay code word, see class GCode, and the corresponding

(positive) Parker loop element is returned.
class GCode The corresponding (positive) Parker loop element is returned.
class PLoop A deep copy of parameter octad is returned.
class GcVector This is converted to a Golay code word, see class GCode, and the corresponding (posi-

tive) Parker loop element is returned.
class XLeech2 The octad part of the vector octad is returned.
str

Create random element depending on the string

'r': Create arbitrary octad

A complement of an octad is also accepted; then the corresponding Parker loop element is retured. The function
raises ValueError if parameter octad does not evaluate to an octad or a complement of an octad.

mmgroup.octad_entries(octad)
Return list of entries of an octad

Here parameter octad describes an octad as in function Octad. That octad is a sum of eight basis vectors of
GF24

2 , with basis vectors numbered from 0 to 23. The function returns the list [b0,...,b7] of the indices of
these eight basis vectors in a certain order that may differ from the natural order.

We use these indices for numbering the suboctads of that octad as described in the documentation of function
SubOctad.

Caution: The order of the basis vectors returned by this function may be changed in future versions!

mmgroup.SubOctad(octad, suboctad=0)
Creates a suboctad as instance of class XLeech2

Parameters

• octad (same as in function Octad) – The first component of the pair (octad, suboctad) to
be created.

• suboctad (see table below for legal types) – The second component of the pair
(octad, suboctad) to be created.

Returns
The suboctad given by the pair (octad, suboctad)

Return type
an instance of class XLeech2

Raise

• TypeError if one of the arguments octad or suboctad is not of correct type.

• ValueError if argument octad or suboctad does not evaluate to an octad or to a correct sub-
octad, respectively.
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A suboctad is an even cocode element that can be represented as a subset of the octad given by the argument
octad.

The raison d’etre of function SubOctad is that pairs (octad, suboctad) are used for indexing vectors in the
representation of the monster group. Here we want to number the octads from 0 to 758 and the suboctads
form 0 to 63, depending on the octad. Note that every octad has 64 suboctads.

Depending on its type parameter suboctad is interpreted as follows:

Table 6: Legal types for parameter suboctad

type Evaluates to
int Here the suboctad with the number given in the argument is taken. That numbering

depends on the octad given in the argument octad. 0 <= suboctad < 64must hold.
list of int Such a list is converted to a bit vector as in class GcVector, and the cocode element

corresponding to that bit vector is taken.
class GCode The intersection of the octad given as the first argument and the Golay code word given

as the second argument is taken.
class GcVector This is converted to a cocode element, see class Cocode, and that cocode element is

taken.
class Cocode That cocode element is taken as the suboctad.
str

Create random element depending on the string

'r': Create arbitrary suboctad

The numbering of the suboctads

Suboctads are numbered for 0 to 63. Let [b0, b1,..., b7] be the bits set in the octad of the pair (octad,
suboctad). Here we assume the indices of the basis vectors making up the octad are ordered as returned by
function octad_entries, when applied to the octad.

The following table shows the suboctad numbers for some suboctads given as cocode elements. More suboctad
numbers can be obtained by combining suboctads and their corresponding numbers with XOR.

Table 7: Suboctad numbers of some cocode elements

[b0,b1] [b0,b2] [b0,b3] [b0,b4] [b0,b5] [b0,b6]
s = 1 s = 2 s = 4 s = 8 s = 16 s = 32

E.g. [b0, b5, b6, b7] is equivalent to [b1, b2, b3, b4] modulo the Golay code and has number s = 1
^ 2 ^ 4 ^ 8 = 15.

1.3.4 Automorphisms of the Parker loop

We deal with a certain group of automorphisms of the Parker loop.

A standard automorphism is an automorphism of the Parker loop 𝒫 which maps to an automorphism of the Golay
code 𝒞 when factoring out the elements {1,−1} of 𝒫 . Let AutSt𝒫 be the group of standard automorphisms of 𝒫 . We
embed AutSt𝒫 into M as in [Con85]. In ATLAS notation, see [CCN+85], that group has structure

AutSt𝒫 = 212.𝑀24 .
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This means that AutSt𝒫 has an elementary Abelian normal subgroup of order 212 with factor group 𝑀24. That group
extension does not split. Here the group 212 is isomorphic to the Golay cocode 𝒞* and 𝑀24 is the Mathieu group acting
on F24

2 by permuting the basis vectors. 𝑀24 is the automorphism group of the Golay code 𝒞 .

The automorphisms in the subgroup 𝒞* of AutSt𝒫 are called diagonal automorphisms. A diagonal automorphism
𝑑 ∈ 𝒞* maps an element 𝑎 of 𝒫 to (−1)𝑠 · 𝑎 with 𝑠 = |𝑎& 𝑑|. Here & means the bitwise and operation of bit vectors
and |.| means the bit weight of a bit vector.

Since the extension 212.𝑀24 does not split, there is no canonical embedding of 𝑀24 into AutSt𝒫 . For practical
purposes we need such an embedding. We choose a basis 𝑏1, . . . , 𝑏11 of the Golay code 𝒞, see section The basis of
the Golay code and of its cocode. Let 𝑎𝑖 be the positive element of the Parker loop 𝒫 corresponding to 𝑏𝑖. For any
𝑔 ∈ 𝑀24 we let 𝑔 be the unique element of AutSt𝒫 with 𝑔𝒞* = 𝑔 that maps all elements 𝑎1, . . . , 𝑎11 of 𝒫 to positive
elements of 𝒫 . We call 𝑔 the standard representative of 𝑔 in AutSt𝒫 .

Elements of AutSt𝒫 are modelled as instances of class AutPL. If d is an instance of class Cocode representing an
element of 𝒞* then AutPL(d) is the corresponding diagonal automorphism.

A permutation 𝑝 ∈ 𝑀24 can be represented as a list l_p = [p(0),...,p(23)]. If l_p is such a list then AutPL(l_p)
is the standard representative of p in AutSt𝒫 . Here an error occurs if the mapping from i to p(i) is not in 𝑀24. A
permutation in 𝑀24 can also be given as a mapping from a subset of {0, . . . , 23} to {0, . . . , 23}, provided that this
mapping extends to a unique element of 𝑀24. For details, see class AutPL.

The group AutSt𝒫 operates naturally on 𝒫 by right multiplication. It also operates on F24
2 , 𝒞, and 𝒞* by right mul-

tiplication. Here the basis vectors of F24
2 are permuted by 𝑀24; so the kernel of that operation is the subgroup 𝒞* of

AutSt𝒫 .

We order the elements 𝑝 of 𝑀24 in lexicographic order based on the lists l_p = [p(0),...,p(23)]. We number the
244823040 elements of 𝑀24 in that order from 0 to 244823039. Thus the number 0 is assigned to the neutral element
of 𝑀24, and the number 244823039 is assigned to the permutation p with l_p =

[23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 0, 1, 2, 3, 4, 5, 6, 7]

These numbers are used for addressing the corresponding standard representatives in the subgroup AutSt𝒫 of the
monster M.

One way to create an element of 𝑀24 is to map an umbral heptad to another umbral heptad. Here an umbral heptad is a
set of 7 elements of {0, . . . , 23} such that precisely 6 of these elements are contained in an octad, see [CS99], Chapter
10. Then the 6 elements in one octad must map to the 6 elements in the other octad.

The set [0,1,2,3,4,5,8] is an umbral heptad with 8 not contained in the octad. We may create the standard repre-
sentative (in AutSt𝒫) of a random element of 𝑀24 as follows:

from random import sample
from mmgroup import Octad, AutPL
# Create a random octad
o = Octad("r")
# Select 6 random elements from that octad
hexad = sample(o.bit_list, 6)
# Select one random element not in that octad
extra = sample((~o).bit_list, 1)
# Create umbral heptad from these random elements
heptad = hexad + extra
# Create a mapping from [0,1,2,3,4,5,8] to that heptad
hmap = zip([0,1,2,3,4,5,8], heptad)
# Create a permutation in the Mathieu group from that mapping
aut = AutPL(0, hmap)
# 'aut' is the standard representative of the permutation
# Show 'aut' as a permutation in form of a list

(continues on next page)
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(continued from previous page)

print(aut.perm)
# Show the automorphism 'aut' with its permutation number
print(aut)

Remark

Class AutPL is a subclass of class mmgroup.structures.AbstractGroupWord which implements elements of an
abstract group and the operations on such elements. For an instance g of AutPL, the object g.group is an instance of
a subclass of mmgroup.structures.AbstractGroup. That subclass models the group AutSt𝒫 .

Generating random elements of certain subgroups of 𝑀24

We support the generation of random elements of certain subgroups of𝑀24. Here any such subgroup stabilizes a subset
(or a sets of subsets) of the set Ω̄ = {0, . . . , 23} on which 𝑀24 acts. Furthermore, any such group is named by a flag
(which is a character), as indicated in the table below. Intersections of these subgroups are described by combining the
characters. The character r describes the whole group 𝑀24. A string of characters describing such a subgroup should
start with r. Whitespace is ignored.

Table of subgroups:

Flag Mnemonic Subgroup stabilizing the set Structure
’r’ (random) the whole set Ω̄ 𝑀24

’2’ 2-set {2, 3} 𝑀22 : 2
’o’ octad {0, . . . , 7} 24 : 𝐴8

’t’ trio {{8𝑖, . . . , 8𝑖 + 7} | 𝑖 < 3} 26 : (𝑆3 × 𝐿3(2))
’s’ sextet {{4𝑖, . . . , 4𝑖 + 3} | 𝑖 < 6} 26 : 3.𝑆6

’l’ (line) {{2𝑖, 2𝑖 + 1} | 4 ≤ 𝑖 < 12} 21+6 : 𝐿3(2)
’3’ 3-set {1, 2, 3} 𝐿3(4) : 𝑆3

For mathematical background we refer to section Subgroups of the Mathieu group M_{24}.

Table 8: Examples of strings describing subgoups of 𝑀24

String Action
'r' Generate a random element of 𝑀24

'r 2o' Generate a random element of 𝑀24 stabilizing {0, . . . , 7} and {2, 3}

class mmgroup.AutPL(d=0, p=0, unique=1)
This class models a standard automorphism of the Parker loop.

Parameters

• d – This parameter describes an element of the Golay cocode. If d is an instance of class
AutPL then this describes an automporphism of the Parker loop; in that case parameter p
must be set to its default value. Legal types of parameter d see below. The parameter defaults
to zero word of the cocode.

• p – This parameter describes a permutation in the Mathieu group M_24 or, more precisely,
the standard representative of that permutation in the automporphism group of the Parker
loop. Legal types of that parameter see below. The parameter defaults to neutral element of
Mat24.

• unique – If this is True (default) and parameter p is not r then parameter p must describe
a unique permutation in the Mathieu group M_24. Otherwise we take the least possible per-
mutation (in lexicographic order) that agrees with parameter p.
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Returns
A standard Parker loop automorphism

Return type
an instance of class AutPL

Raise

• TypeError if type(value) is not in the table given below.

• ValueError if the set of arguments cannot be converted to an instance of class AutPL.

Table 9: Legal types for parameter d in constructor of class AutPL

type Evaluates to
int The number of an element of the Golay cocode.
class Cocode This represents an element of the Golay cocode.
str

Create random element depending on str

'r': Create an arbitrary cocode element
'e': Create an even cocode element
'o': Create an odd cocode element

Any other string is illegal.
class AutPL A deep copy of the given automorphism in AutPL is returned. Then parmeter p

must be set to its default value.

Table 10: Legal types for parameter p in constructor of class AutPL

type Evaluates to
int Here the integer is the number of a permutation in the Mathieu group M_24.
list of int A list l_p of 24 of disjoint integers 0 <= i < 24 is interpreted as a permutation

in M_24 that maps i to l_p[i].
dict A dictionary specifies a mapping from a subset of the integers 0 <= i < 24

to integers 0 <= dict[i] < 24. This mapping must extend to a permutation
in M_24. If parameter unique is True (default) then that permutation must be
unique in M_24.

zip object zip(x,y) is equivalent to dict(zip(x,y)).
str Create random element depending on the string

'r' Create random element of M_24
'r <flags>' Create random element of subgroup of M_24, de-

pending on <flags>, see explanation above.

Let a be an instance of class GcVector, GCode, Cocode, or PLoop, and let g1 , g2 be instances of class AutPL.
Then a * g1 is the result of the natural operation of g1 on a, which belongs to the same class as a.

g1 * g2means group multiplication, and g1 ** nmeans exponentiation of g1with the integer n. g1 ** (-1)
is the inverse of g. g1 / g2 means g1 * g2 ** (-1).

g1 ** g2 means g2**(-1) * g1 * g2.

as_tuples()

Convert group element to a list of tuples

For a group element g the following should hold:
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g.group.word(*g.as_tuples()) == g .

So passing the tuples in the list returned by this method as arguments to g.group or to g.group.word
reconstructs the element g.

This shows how to convert a group element to a list of tuples and vice versa.

check()

Check automorphism for consistency via ‘assert’ statements

a.check() returns a.

property cocode

Return number of cocode element in the automorphism.

For an instance g of AutPL we have

g == AutPL(Cocode(g.cocode)) * AutPL(g.perm).

property parity

Return parity of an automorphism

This is s if PLoopOmega maps to (-1)**s * PLoopOmega for s == 0 or s == 1.

property perm

Return permutation of automorphism as a list p_l.

Then the permutation maps i to p_l[i] for i = 0,...,23.

property perm_num

Return the number of the permutation of the automorphism

The Mathieu group M_24 has 244823040 elements numbered from 0 to 244823039 in lexicographic order.
Thus the neutral element has number 0.

1.3.5 The Leech lattice modulo 2 and its preimage 𝑄𝑥0

We deal with an extraspecial group that maps to the Leech lattice modulo 2

Let 𝑄𝑥0 be the group generated by elements 𝑥𝑑, 𝑥𝛿 with 𝑑 ∈ 𝒫, 𝛿 ∈ 𝒞*. Here 𝒫 is the Parker loop and 𝒞* is the Golay
cocode as in [Con85]. We take the following relations in 𝑄𝑥 from [Sey20]:

𝑥𝑑𝑥𝑒 = 𝑥𝑑·𝑒𝑥𝐴(𝑑,𝑒), 𝑥𝛿𝑥𝜖 = 𝑥𝛿𝜖, [𝑥𝑑𝑥𝛿] = 𝑥
⟨𝑑,𝛿⟩
−1 ; 𝑑, 𝑒 ∈ 𝒫; 𝛿, 𝜖 ∈ 𝒞* .

Here 𝐴(𝑑, 𝑒) is the associator between 𝑑 and 𝑒, i.e. the element of 𝒞* corresponding to the vector 𝑑∩ 𝑒; and [., .] is the
commutator in 𝑄𝑥0. Then 𝑄𝑥0 is an extraspecal group of structure 21+24

+ .

An element of the group 𝑄𝑥 is modelled as an instance of class XLeech2.

In that class we encode the element 𝑥𝑑 · 𝑥𝛿 of 𝑄𝑥0 as an integer 𝑥 as follows:

𝑥 = 212 · 𝑑⊕ (𝛿 ⊕ 𝜃(𝑑)) .

Here elements of the Parker loop and elements of the cocode are encoded as integers as in section The Parker loop and
The Golay code and its cocode. 𝜃 is the cocycle given in section The basis of the Golay code and of its cocode, and
‘⊕’ means bitwise addition modulo 2. Note that a Parker loop element is 13 bits long (with the most significant bit
denoting the sign) and that a cocode element is 12 bits long.

There is a natural homomorphism from 𝑄𝑥0 to the Leech lattice Λ modulo 2 with kernel {𝑥1, 𝑥−1}, as described in
[Con85]. This homomorphism maps the group operation in 𝑄𝑥0 to vector addition in Λ/2Λ. With our numbering in
𝑄𝑥0 that homomorphism can be realized by simply dropping the sign bit 25; then vector addition in Λ/2Λ corresponds
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to the ⊕ operation on such numbers. The natural quadratic form on the vector in Λ/2Λ with the number 212 · 𝑑 + 𝛿,
0 ≤ 𝑑, 𝛿 < 212 is the parity of the bit vector 𝑑⊕ 𝛿.

class mmgroup.XLeech2(ploop=0, cocode=0, *args)
This class models an element of the group 𝑄𝑥0.

The group 𝑄𝑥0 is an extraspecial 2 group of structure 21+24.

The group operation is written multiplicatively.

The 21+24 group elements are numbered from 0 to 0x1ffffff. Elements 0 to 0xffffff are considered positive.
The element with number 0x1000000 ^ i is the negative of the element with number i.

An element is constructed as a product 𝑥𝑑𝑥𝛿 , where 𝑑 is in the Parker loop and 𝛿 is in the Golay cocode.

Parameters

• value – This parameter describes the value of an element of the group 𝑄𝑥0 as indicated in
the table below.

• cocode – This parameter describes an element 𝑥𝛿 (with 𝛿 in the Golay cocode) to be right
multiplied to the element of 𝑄𝑥0 obtained from the first parameter.

Returns
An element of the group 𝑄𝑥0.

Return type
an instance of class XLeech2

Raise

• ValueError if the input cannot converted to an element of the group 𝑄𝑥0.

• TypeError the ype of an input is illegal.

Caution: Although the group 𝑄𝑥0 has a natural embedding into the subgroup 𝐺𝑥0 of the monster group, we
do not consider an instance 𝑞 of class XLeech2 as an element of 𝐺𝑥0. We consider 𝑞 as a (possibly negated)
basis vector of a space on which the subgroup 𝐺𝑥0 of the monster acts monomially by right multiplication.

Depending on its type parameter value is interpreted as follows:

Table 11: Legal types for constructor of class XLeech2

type of value Evaluates to
int Here the code word with number value is returned. 0 <= value < 0x2000000

must hold.
class XLeech2 A deep copy of the object value is created.
class GCode The corresponding Golay code element is converted to a (positive) element of

𝑄𝑥0.
class PLoop The corresponding Parker loop element is converted to an element of 𝑄𝑥0.
class MM Then value in an element of the monster group. If that element is in the subgroup

𝑄𝑥0 of the monster, then it is converted to the coresponding instance of class
XLeech2.

'r' Create random element depending on the string, see explanation below.
A letter BCTXE If value is a single capital letter in BCTXE then we create an element correspond-

ing to a unit vector in 𝜌𝑝 as described below.
Any other string s This is intepreted as the element MM('q', s) of the Monster group.
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If value is of one of the type listed above then the following parameter is converted to an element of the Golay
cocode (as in the constructor of class Cocode multiplied to the converted parameter value from the right.

Alternatively, parameter valuemay be a single letter. If value is one of the capital letters BCTXE then that letter
and the following arguments are passed to the constructor of class MMVector in order to generate a (possible
negated) basis vector of the representation 𝜌𝑝 of the monster. (Here the characteristic 𝑝 is ignored.) If that basis
vector corresponds to an element of 𝑄𝑥0 then we construct that element of 𝑄𝑥0; otherwise an error occurs.

If parameter value is the letter 'r' then we generate a random element of 𝑄𝑥0. If an integer i is given as a
second parameter 'r' then we generate a random element of 𝑄𝑥0 of type i. Here the type of a vector 𝑣 ∈ Λ/2Λ
is the halved norm of the shortest vector in the set 𝑣 + 2Λ. If i is specified then it must be equal to 0, 2, 3 or 4.

Standard operations

Let q be an instance of this class. The multiplication operator * implements the group operation. Division by an
element means multiplication by its inverse, and exponentiation means repeated multiplication, with q**(-1)
the inverse of q, as usual.

Multiplication with the integer 1 or -1 means the multiplication with the neutral element or with the central
involution 𝑥−1.

The opration & denotes the scalar product of the vectors in the Leech lattice modulo 2 obtained from an instance
of this class, ignoring the sign.

Standard functions

abs(a) returns the element in the set {a, -a} which is positive.

If an instance 𝑞 of class XLeech2 maps to a vector of type 2 in the Leech lattice modulo 2 then 𝑞 is also a unit
vector in the 196884-dimensional representation 𝜌 of the monster group.

One may use 𝑞 in the constructor of class MM (representing the monster group) for creating the corresponding
element of the subgroup 𝑄𝑥0 of the monster group.

as_Leech2_bitvector()

Convert element to a bit vector in a numpy array

The element is returned as a numpy array v of length 24 of 8-bit unsigned integers, with each entry equal
to 0 or 1. This array represents a vector in the Leech lattice mod 2 in the standard encoding.

For an instance x of this class we have v[i] = (x.ord >> i) & 1, for 0 <= i < 24.

as_suboctad(strict=False)
Convert element to a suboctad if possible.

Let 𝑥𝑑 · 𝑥𝛿 be equal to the given element of 𝑄𝑥0. If 𝑑 corresponds to a (possibly complemented) octad and
𝛿 is an even cocode element and can be represented as a subset of 𝑑 then the given element is a suboctad.
In this case the function returns a pair (octad, suboctad) of integers describing a suboctad a in function
SubOctad in Section Octads and suboctads.

If strict is True then the given element must also correspond to a short vector in the Leech lattice mod
2. The function raise ValueError if the given element does not satisfy the conditions mentioned above.

classmethod gen_type(vtype=2, positive=True)
Return generator that yields the vectors of a given type

The function returns a generator that yields all elements of 𝑄𝑥0 that map to a vector of the type vtype in
the Leech lattice (mod 2) as instances of class XLeech2.

Parameter vtype must be 0, 2, 3 or 4, where vtype = 2 (default) means the short Leech lattice vectors.

If parameter positive``is ``True (default) then the elements with positive sign are generated only.
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isplit()

Split element into a product 𝑥𝑑 · 𝑥𝛿

The method returns a pair (𝑑, 𝛿) such that 𝑥𝑑 · 𝑥𝛿 is equal to the given element of 𝑄𝑥0.

Here (𝑑, 𝛿) is returned as a pair of integers.

property mmdata

Return internal representation of corresponding monster element.

That internal representation is returned as a numpy array of 32-bit integers.

octad_number()

Return number of octad.

Let 𝑥𝑑 · 𝑥𝛿 be equal to the given element of 𝑄𝑥0. If 𝑑 corresponds to a (possibly complemented) octad in
the Golay code then the function returns the number of that octad as a nonnegative integer less than 759.
Otherwise the function raises ValueError.

Here the octads are numbered as in class GCode.

property ord

Return the number of the element of 𝑄𝑥0 .

We have 0 <= i < 0x2000000 for the returned number i.

property sign

Return the sign of the element 𝑄𝑥0.

This is 1 for a positive and -1 for a negative element.

split()

Split element into a product 𝑥𝑑 · 𝑥𝛿

The method returns a pair (𝑑, 𝛿) such that 𝑥𝑑 · 𝑥𝛿 is equal to the given element of 𝑄𝑥0.

The element 𝑑 of the Parker loop is an instance of class PLoop. The element 𝛿 of the Golay cocode is an
instance of class Cocode.

str()

Represent group element as a string

property subtype

Return pair (type, subtype) of the element of 𝑄𝑥0

Here type is as in property type, and subtype is a one-digit decimal integer describing the subtype of a
vector in the Leech lattice modulo 2, as explained in the guide in section Computations in the Leech lattice
modulo 2.

property type

Return the type of the element of 𝑄𝑥0.

This is equal to the type of the corresponding vector 𝑣 in the Leech lattice Λ modulo 2. The type of a vector
𝑣 ∈ Λ/2Λ is the halved norm of the shortest vector in the set 𝑣 + 2Λ. That type is equal to 0, 2, 3 or 4.

vector_tuple()

Return unit vector in representation of the monster as tuple

If the element of 𝑄𝑥0 corresponds to a vector of type 2 in the Leech lattice then it also corresponds to a
unit vector v in the representation 𝜌 of M; otherwise the function raises ValueError.
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The function returns a tuple (sign, tag, i0, i1), with sign = +1 or -1. Then the triple (tag,
i0, i1) corresponds to a basis vector u in 𝜌 as described in class MMVector, and we have v = sign *
u.

property xsubtype

Return subtype of the element of 𝑄𝑥0

The function returns the integer 16 * type + subtype, where the pair (type, subtype) is as in prop-
erty subtype. See section Computations in the Leech lattice modulo 2 in the guide for background.

mmgroup.leech2_orbits_raw(g_list)
Compute orbits of the Conway group on the Leech lattice mod 2

The Conway group Co1 has a natural action on Λ/2Λ, i.e. on the Leech lattice mod 2. The subgroup 𝐺𝑥0 of the
Monster (of structure 21+24.Co1) has the same action on Λ/2Λ.

Given a list g_list of generators of a subgroup 𝐻 of 𝐺𝑥0, the function computes the orbits of Λ/2Λ under the
action of 𝐻 . Here the entrries of the list g_list may be instances of class MM , which are elements of the group
𝐺𝑥0.

The function encodes an element of Λ/2Λ as an integer, as in class XLeech2, setting the sign bit to zero.

The function returns a triple (n_sets, indices, data) that defines the partition of Λ/2Λ. Here the integer
n_sets is the number of sets in the partition. indices is an array of indices referring the the array data. Array
data stores the 224 elements of Λ/2Λ, so that for 0 <= i < n_sets the i-th set of the partition is equal to the
array data[indices[i] : indices[i+1]].

The entries of the array data[indices[i] : indices[i+1]] are sorted. The sets of the partition are sorted
by their smallest elements.

1.3.6 The basis of the Golay code and of its cocode

We chose a basis b_0,. . . , b_11 of the Golay code 𝒞 such that the resulting Golay code is compatible to [CS99], Chapter
11.

As usual in the Python or C language we number the indices of the basis vectors of the spaceF24
2 from 0 to 23. Similarly,

we number the basis vectors of the Golay code from 0 to 11.

In [CS99] the Golay code is described in terms of the MOG (Miracle Octad Generator), which can be considered as a
4 × 6 matrix for arranging the basis vectors of F24

2 . Our numbering of these basis vectors corresponds to the MOG as
follows:

0 4 8 12 16 20
1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23

For the cocode 𝒞* we use the reciprocal basis c_0,. . . , c_11 of the basis b_0,. . . , b_11 of 𝒞. Then the scalar product
b_i & c_j of b_i and c_j is equal to 1 if i == j and to 0 otherwise.

The basis vectors b_0,. . . , b_11 of the Golay code are given in the following table. The table also shows the cocyles of
the basis vectors as explained below:

Basis vectors of the Golay code Cocycle theta
binary: bit 0,...,23 hex bit 0,...,11

b_0: 0000 1111 0000 1111 1111 1111, 0xfff0f0; 0111 0000 0000
b_1: 0000 1111 1111 0000 1111 1111, 0xff0ff0; 1011 0000 0000

(continues on next page)
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(continued from previous page)

b_2: 0000 1111 1111 1111 0000 1111, 0xf0fff0; 1101 0000 0000
b_3: 0000 1111 1111 1111 1111 0000, 0x0ffff0; 1110 0000 0000
b_4: 0000 0000 0011 0011 0011 0011, 0xcccc00; 1111 0000 0000
b_5: 0000 0000 0101 0101 0101 0101, 0xaaaa00; 1111 0000 0000
b_6: 0000 0011 0000 0011 0101 0110, 0x6ac0c0; 0111 0000 0000
b_7: 0000 0101 0000 0101 0110 0011, 0xc6a0a0; 0111 0000 0000
b_8: 0011 0000 0000 0011 0110 0101, 0xa6c00c; 1000 0000 0010
b_9: 0101 0000 0000 0101 0011 0110, 0x6ca00a; 1000 0000 0010
b_10: 0111 1000 1000 1000 1000 1000, 0x11111e; 0000 0000 0000
b_11: 1111 1111 1111 1111 1111 1111, 0xffffff; 0000 0000 0000

Representatives of the basis vectors c_0,. . . , c_11 of the Golay cocode are given in the following table:

Basis vectors of the cocode
binary: bit 0,...,23 hex

c_0: 0000 1000 1000 0000 0000 0000, 0x000110
c_1: 0000 1000 0000 1000 0000 0000, 0x001010
c_2: 0000 1000 0000 0000 1000 0000, 0x010010
c_3: 0000 1000 0000 0000 0000 1000, 0x100010
c_4: 0000 0000 0101 0000 0000 0000, 0x000a00
c_5: 0000 0000 0011 0000 0000 0000, 0x000c00
c_6: 0000 0101 0000 0000 0000 0000, 0x0000a0
c_7: 0000 0011 0000 0000 0000 0000, 0x0000c0
c_8: 0101 0000 0000 0000 0000 0000, 0x00000a
c_9: 0011 0000 0000 0000 0000 0000, 0x00000c
c_10: 1000 1000 1000 1000 1000 1000, 0x111111
c_11: 1000 0000 0000 0000 0000 0000, 0x000001

The cocycle 𝜃 : 𝒞 × 𝒞 → F2 is used for the multiplication of two elements of the Parker loop, see section The Parker
loop. For basis vectors 𝑏𝑖, 𝑏𝑗 of 𝒞 the column theta in the table above contains the value 𝜃(𝑏𝑖, 𝑏𝑗) in bit 𝑗 of row 𝑖.
From these values other values of the cocycle 𝜃 can be computed by using

𝜃(𝑔1 + 𝑔2, 𝑔3) = 𝜃(𝑔1, 𝑔3) + 𝜃(𝑔2, 𝑔3) + |𝑔1&𝑔2&𝑔3|,
𝜃(𝑔1, 𝑔2 + 𝑔3) = 𝜃(𝑔1, 𝑔2) + 𝜃(𝑔1, 𝑔3), 𝑔1, 𝑔2, 𝑔3 ∈ 𝒞 .

Here & means the bitwise and operation of bit vectors and |.| means the bit weight of a bit vector.

The cocycle 𝜃 has been chosen in accordance with the requirements in [Sey20]. In that context the grey subspace of 𝒞
is spanned by 𝑏0, . . . , 𝑏3, 𝑏10, 𝑏11 and the coloured subspace of 𝒞 is spanned by 𝑏4, . . . , 𝑏9. Similarly, the grey subspace
of 𝒞* is spanned by 𝑐0, . . . , 𝑐3, 𝑐10, 𝑐11 and the coloured subspace of 𝒞* is spanned by 𝑐4, . . . , 𝑐9.

These specific properties of our chosen basis and cocycle are vital for obtaining an effective implementation of a
complete generating set of the monster M.

1.4 The Monster group

We deal with the representation of elements of the monster group.
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1.4.1 Generators of the monster group M

Conway [Con85] has constructed a 196884-dimensional rational representation 𝜌 of the monster M based on represen-
tations of two subgroups 𝐺𝑥0 = 21+24

+ .Co1 and 𝑁0 = 22+11+22.(𝑀24 × 𝑆3) of M which generate M. Here 𝐺𝑥0 has
a normal extraspecial 2-subgroup 21+24

+ with factor group Co1, where Co1 is the automorphism group of the Leech
lattice modulo 2. The group 𝑁0 has a normal subgroup 22+11+22, which is a certain 2 group and the factor group is a
direct product of the Mathieu group 𝑀24 and the symmetric permutation group 𝑆3 of 3 elements.

The group 𝑁𝑥0 = 𝑁0 ∩ 𝐺𝑥0 has index 3 in 𝑁0 and structure 21+24.211.𝑀24. It is generated by elements 𝑥𝛿 , 𝑥𝜋 , 𝑥𝑒,
𝑦𝑒, 𝑧𝑒, for all 𝑥𝛿 ∈ 𝒞*, 𝜋 ∈ AutSt𝒫 and 𝑒 ∈ 𝒫 .

Here 𝒞* is the Golay cocode defined in section The Golay code and its cocode, 𝒫 is the Parker loop defined in section
The Parker loop, and AutSt𝒫 is the automorphism group of 𝒫 defined in section Automorphisms of the Parker loop.
The group 𝑁0 has a subgroup isomorphic to AutSt𝒫 generated by the generators 𝑥𝛿, 𝛿 ∈ 𝒞* and 𝑥𝜋, 𝜋 ∈ AutSt𝒫 .
The generators 𝑥𝛿 generate the subgroup of diagonal automorphisms of AutSt𝒫 .

The group 𝑁0 is generated by 𝑁𝑥0 and by another element 𝜏 of 𝑁0 or order 3. The group 𝐺𝑥0 is generated by 𝑁𝑥0 and
by another element 𝜉 of 𝐺𝑥0 or order 3. The elements 𝑥𝛿 , 𝑥𝜋 , 𝑥𝑒, 𝑦𝑒, 𝑧𝑒, 𝜏 and 𝜉 generate the monster group M. In
this package we use the definitions of the generators in [Sey20], which incorporate a modification of [Con85] made in
[Iva09]. This leads to simpler relations in 𝑁0. The generators 𝑥𝑒, 𝑦𝑒, and 𝑧𝑒 in [Sey20] correspond to the generators
𝑥𝑒 · 𝑧|𝑒/4|−1 , 𝑦𝑒 · 𝑥|𝑒/4|

−1 , and 𝑧𝑒 · 𝑦|𝑒/4|−1 in [Con85].

1.4.2 Representing elements of the monster group

An element of the monster group M is represented as an instance of class MM in module mmgroup.

Elements of the monster group are created by the constructor of class MM . Usually, the constructor of class MM takes two
arguments tag and i, where tag is a single small letter describing the type of the generator of M, and i is an integer
describing the value of that generator. Alternatively, i may be an instance of the appropriate algebraic structure used
for indexing a generator of a given type as indicated in the table below.

1.4.3 Implementation of the generators of the monster group

Math papers may use (at least) Latin or Greek letters for labelling objects, but most programming languages are re-
stricted to ASCII characters. The following table shows how to create generators of the monster group using the
constructor of class MM:

Table 12: Construction of generating elements of the monster

Ele-
ment

Construction as an instance of class MM,

𝑥𝛿 MM('d', delta), delta an instance of class Cocode;
MM('d', delta) returns MM('d', Cocode(delta)) for 0 <= delta < 0x1000.

𝑥𝜋 MM(pi), pi an instance of class AutPL;
MM('d', delta) * MM('p', n) is equivalent to MM(AutPL(delta, n)) for 0 <= delta <
0x1000, 0 <= n < 244823040 .

𝑥𝑒 MM('x', e), x an instance of class PLoop;
MM(('x', e)) returns MM('x', PLoop(e)) for 0 <= e < 0x2000.

𝑦𝑒 MM('y', e), e as in case 𝑥𝑒.
𝑧𝑒 MM('z', e), e as in case 𝑥𝑒.
𝜏𝑒 MM('t', e), exponent e is an integer which is taken modulo 3.
𝜉𝑒 MM('l', e), exponent e is an integer which is taken modulo 3.
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More possibilities for constructing elements of an instance of class MM are given in the description of that class. Mul-
tiplication and exponentiation of group elements works a usual.

1.4.4 Multiplication of elements of the monster group

Internally, an element of M is represented as a word of the generators given above. Multiplication with the * operator
is a concatenation of such words, followed by a reduction step. Multiplication of two reduced elements of the monster
group (including the reduction of the result) takes less than 50 milliseconds on the author’s computer.

The reduction after a group operation is done by a new method that tracks pairs of perpendicular 2A axes, see [Sey22]
for details.

1.4.5 Python classes implementing the Monster group

class mmgroup.MM(tag=None, i=None, *args, **kwds)
Models an element of the monster group M

Let g1 and g2 be instances of class MM representing elements of the monster group. Then g1 * g2means group
multiplication, and g1 ** n means exponentiation of g1 with the integer n. g1 ** (-1) is the inverse of g.
g1 / g2 means g1 * g2 ** (-1). We have 1 * g1 == g1 * 1 == g1 and 1 / g1 == g1 ** (-1).

g1 ** g2 means g2**(-1) * g1 * g2.

Let V be a vector space that is a representation of MM, see class MMVector for details. An instance g1 of class MM
operates on the vector space V by right multiplication.

Variables

• tag – In the simplest case, parameter tag is a string of length 1 that determines the type
of the atomic group element. There are also some special cases for parameter tag `` as
indicated below. If ``tag is not given or equal to 1 then the neutral element of the
monster group is constructed.

• i – Parameter i is number of the atomic element of a given tag. Depending on the tag, i
may be the number of an element of one of the structures PLoop, Cocode, or the number of
an element of the Mathieu group M_24, as explained in class AutPL. An element 𝜋 of the
group AutPL is mapped to the element 𝑥𝜋 of the Monster group.

The number i may also be an instance of the appropriate class PLoop, Cocode, or AutPL,
as indicated in the table below.

Returns
An element of the monster group

Return type
an instance of class MM

Standard tags

The tags listed in the following tables are standard tags that can be used for creating generators (or some short
words of generators) of the monster group.
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Table 13: Atomic elements of the Monster group

Tag Number i Type of element
'p' 0-244823039 The automorphism AutPL(0, i) of the Parker loop, see below.
'd' 0-0xfff The diagonal automorphism Cocode(i) in AutPL.
'x' 0-0x1fff The element 𝑥𝑒, with e = PLoop(i).
'y' 0-0x1fff The element 𝑦𝑒, e = PLoop(i); similar to tag 'x'.
'z' 0-0x1fff The element 𝑧𝑒, e = PLoop(i); similar to tag 'x'. We have 𝑥𝑒𝑦𝑒𝑧𝑒 =

𝑦𝑒𝑥𝑒𝑧𝑒 = 1.
't' 0-2 The element 𝜏 𝑖,
'l' 0-2 The element 𝜉𝑖,
'q' 0-0x1ffffff Describes an element of the subgroup 𝑄𝑥0. See remark below.
'c' 0-0xffffff A representative of a right coset of 𝑁𝑥0 in 𝐺𝑥0. See remark below.

Apart from the standard tags there are also some tags for special purposes discussed in the following sections.

Remarks

If i is the string 'r' then a random element with the given tag is generated. If i is the string 'n' then a random
element with the given tag is generated, which is different from the neutral element with a very high probability.

If tag == 'd' then i = 'o' generates a random odd and i = 'e' generates a random even diagonal auto-
morphism. In this case i` may also be an instance of class Cocode, representing the diagonal automorphism
corresponding to the given element of the Golay cocode.

If tag == 'p' then i may also be an instance of class AutPL. Then the returned atom is the Parker loop auto-
morphism given by that instance. If i is an integer then the Parker loop automorphism AutPL(0, i) is returned.
This automorphism is the standard representative of the i-th element of the Mathieu group M_24 in the automor-
phism group of the Parker loop.

If tag == 'p' then i may also be a string starting with the letter r. This string indicates a certain subgroup of
the Mathieu group M_24 as described in section Generating random elements of certain subgroups of M_{24}.
Then we generate a random element g of that subgroup, and the returned atom is the standard representative
AutPL(0, g) of g in the automorphism group of the Parker loop.

If tag is 'x', 'y' or 'z' then i may also be an instance of class PLoop, representing an element of the Parker
loop.

The exponent i for a tag 't' or 'l' is reduced modulo 3.

The tag 'q' is useful for encoding an element of the subgroup 𝑄𝑥0 of the monster. An atom with tag 'q' and
index i encodes the element 𝑥𝑑 · 𝑥𝛿 · 𝑥𝜃(𝑑), with 𝑑 = PLoop(i >> 12) ∈ 𝒫‘, 𝛿 = Cocode(i & 0xfff) ∈ 𝒞*,
and 𝜃 : 𝒫 → 𝒞* the cocycle of the Parker loop.

The tag 'c'with index i encodes a representative of the right coset 𝑁𝑥0𝑔, 𝑔 ∈ 𝐺𝑥0 of 𝑁𝑥0 in 𝐺𝑥0 that maps the
standard frame Ω in the Leech lattice modulo 2 to a type-4 vector given by the index i. Here i encodes a vector
in the Leech lattice modulo 2 as in the description for tag 'q'. That vector must be of type 4. The sign bit of
that vector is ignored. Here i may also be an instance of class XLeech2 representing a type-4 vector. We warn
the user that the index i may specify any element of the corresponding right coset 𝑁𝑥0𝑔; and that this element
may depend on the version of the package.

Generating a random element of the subgroup of the monster

If parameter tag is equal to the string 'r' then parameter i should be a string describing a subgroup of the
monster group. E.g. if parameter i is the string 'G_x0' then a uniform distributed element of the subgoup
'G_x0' of the Monster is generated. The group 'G_x0' is the centralizer of the involution 𝑥−1; and it has
structure 21+24.Co1. For more information about generating random elements in subgroups of the Monster we
refer to Section Generating random elements of certain subgroups of the Monster in the API reference.
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Here Parameter i may also be a positive integer. If this is the case then an element of the monster of shape
𝑔0𝑡1𝑔1𝑡2𝑔2...𝑡𝑖𝑔𝑖 is created, where 𝑔𝑗 is a random element of 'G_x0', and 𝑡𝑗 is 𝜏±1.

Generating an element of monster from its internal representation

If parameter tag is equal to the string 'a' then parameter 'i' should be an array-like object containing the
internal representation of an element of the monster group.

Internally, an element of the monster group is represented as an array of unsigned 32-bit integers, where each
entry of the array describes a generator. See section Header file mmgroup_generators.h for details.

Special types accepted as tags

In the simplest case the argument tag in the constructor is a string of length 1. There are a few other types which
are also accepted as tags. For such a special tag, the following parameter i in the constructor is ignored.

Especially, we may encode a word of standard generators as a list of tuples as indicated in the table below.

Table 14: Legal types as tags in the constructor of class MM

Object of type Evaluates to
type list A list represents the product of its entries in the given order. An entry MM(tag,

i) can be abbreviated to the tuple (tag, i).
class PLoop The Parker loop element 𝑑 given by that object is mapped to 𝑥𝑑 ∈ M.
class AutPL The Parker loop automorphism 𝜋 given by that object is mapped to 𝑥𝜋 ∈ M.
class Cocode The Golay cocode element 𝛿 given by that object is mapped to 𝑥𝛿 ∈ M.
class XLeech2 The element corresponding to that element of 𝑄𝑥0 is created.
class MM A deep copy of the given element of M is made.
str of length greater
than 1

For an instance g of class MM we have MM(str(g)) == g.
So we can reread printed elements of MM.

Special strings accepted as a value after tag ‘q’

The following strings are accepted after tag ‘q’. They denote special elements in the group 𝑄𝑥0 as indicated in
the following table.

String after tag q Evaluates to
'+', '-' 𝑥1, 𝑥−1

'Omega', '-Omega' 𝑥Ω, 𝑥−Ω, where Ω is the Golay code word (1, . . . , 1)
'omega', '-omega' 𝑥𝜔, 𝑥−1𝑥𝜔 , for the cocode word 𝜔 = [0,1,2,3]
'v+', 'v-' 𝑥𝛿, 𝑥−1𝑥𝛿 , for the cocode word 𝛿 = [2,3], see [Sey22] background

The strings '+', '-', 'Omega', '-Omega' are also accepted after a tag x, meaning the same element. They
are also accepted after tags x, z with the obvious meaning, e.g. ('y', '-Omega') = 𝑦−Ω, ('z', '-') =
𝑧−1.

as_Co1_bitmatrix()

Convert element of 𝐺𝑥0 to a 24 times 24 bit matrix

The bit matrix is returned as a 24 times 24 bit numpy array of 8-bit unsigned integers, with each entry equal
to 0 or 1.

That matrix operates by right multiplication on a vector representing an element of the Leech lattice mod
2. See method mmgroup.XLeech2.as_Leech2_bitvector for the encoding of such a vector.

The function raises ValueError if the element is not in the subgroup 𝐺𝑥0 of the Monster.
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as_int()

Map element of the Monster to a 255-bit integer

The method returns a 255-bit integer n describing the element of the Monster group. This integer is unique
for each element of the Monster, so that it can be used e.g. for storing large subsets of the Monster in a hash
table.

Function MM_from_int reconstructs the element of the Monster from the number returned by this function.

Warning:

The numbering used here is not contiguous and not portable between difffernt versions of the mmgroup
package!

For writing a element to a file, you should convert it to a string instead!

as_tuples()

Convert group element to a list of tuples

For a group element g the following should hold:

self.__class__(self.as_tuples()) == self .

This shows how to convert a group element to a list of tuples and vice versa.

chi_G_x0(involution=None)
Compute characters of element of subgroup 𝐺𝑥0

If the element is in the subgroup 𝐺𝑥0 then the function returns a tuple (𝜒𝑀 , 𝜒299, 𝜒24, 𝜒4096) of integers.
Otherwise it raises ValueError.

Here 𝜒𝑀 is the character of the element in the 196833-dimensional rep 198883𝑥 of the monster.

By Conway’s construction of the monster we have:

198883𝑥 = 299𝑥 ⊕ 24𝑥 ⊗ 4096𝑥 ⊕ 98280𝑥,

for suitable irreducible representations 299𝑥, 24𝑥, 4096𝑥, 98280𝑥 of the group 𝐺𝑥0. The corresponding
characters of the element of 𝐺𝑥0 are returned in the tuple given above.

While the product 𝜒24 · 𝜒4096 is well defined, the factors 𝜒24 and 𝜒4096 are defined up to sign only. We
normalize these factors such that the first nonzero value of the pair (𝜒24, 𝜒4096) is positive.

If parameter involution is a 2B involution 𝑖 then the element 𝑔 given by self must centralize that invo-
lution 𝑖. In this case we compute the corresponding characters of 𝑔ℎ for a ℎ ∈ M such that 𝑖ℎ is the central
involution of 𝐺𝑥0.

chi_powers(max_e=None, ntrials=100, mp=1)
Return order and some character information of the element

Let 𝑔 be the element of the Monster given by self; and let 𝜒𝑀 be the character given by the 196833-
dimensional rep 198883𝑥 of the monster. The method tries to compute characters 𝜒𝑀 (𝑔𝑒) for values 𝑒
dividing the order of 𝑔. This method is very fast; but it may fail, as discusssed below.

The function returns a triple (o, chi, h), where o is the order of the element 𝑔.

Short description:

Part chi of the return value is a dictionary that maps the divisors e of the order o to the character values
𝜒𝑀 (𝑔𝑒). We put chi[e] = None if 𝜒𝑀 (𝑔𝑒) has not been computed.

If o is even then 𝜒𝑀 (𝑔𝑜/2) is computed with a very high probability. So we can check if 𝑔 powers up to a
2A or to a 2B involution. If 𝑔 powers up to a a 2B involution then all characters are computed with high
pobability.
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Exact description:

The method succeeds with high probability if 𝑔 powers up to a 2B involution, and also if 𝑔 ∈ 𝐺𝑥0. In other
cases the method usually fails. If the character of an element is computed then the characters of the powers
of that element are also computed.

The method tries to find an element ℎ of the Monster such that computing the character of ℎ−1𝑔ℎ is easier
than computing the character of 𝑔. Here ℎ = 1 is possible. The function returns ℎ in part h of the return
value. We use a probabilistic algorithm to compute ℎ.

If 𝑜 is even and chi[o//2] is not None then we asssert that ℎ−1𝑔𝑜/2ℎ is equal to the standard 2A or 2B
involution. The standard 2A involution is 𝑥𝛿 , where 𝛿 is the Golay cocode element (2, 3). The standard 2B
involution is the central involution 𝑥−1 of 𝐺𝑥0. Here the computation of chi[o//2] may fail with a very
small probability, depending on the number of trials, as given by parameter ntrials.

If parameter max_e is an integer (i.e. not None), we may omit some computations of chi[e] for e >
max_e. We always try to compute chi[o//2] if o is even.

If parameter mp is greater than 1 then we may use up to mp parallel processes.

conjugate_involution(check=True, ntrials=40, verbose=0)
Find an element conjugating an involution into the centre

If the element 𝑔 given by self is an involution in the monster then the method computes an element ℎ of
the monster with ℎ−1𝑔ℎ = 𝑧, where 𝑧 is defined as follows:

If 𝑔 = 1, we put ℎ = 𝑧 = 1

if 𝑔 is a 2A involution (in the monster) then we let 𝑧 be the involution in 𝑄𝑥0 corresponding to the Golay
cocode word with entries 2, 3 being set.

if 𝑔 is a 2B involution (in the monster) then we let 𝑧 be the central involution in 𝐺𝑥0

The function returns a pair (I, h), where ℎ as an element of the instance MM of class MMGroup. We put I
= 0 if 𝑔 = 1. We put I = 1, 2 if 𝑔 is a 2A or 2B involution, respectively.

This function may take a long time. Parameter ntrials gives the number of trials to find a suitable element
ℎ. Default is ntrials = 40. The function may fail after that number of trials even if the element is a 2B
involution.

If parameter check is True (default) then the function first checks if g is an involution.

In future versions support for multiprocessing may be added.

conjugate_involution_G_x0(guide=0, group=None)
Wrapper for corresponding method in class mmgroup.Xsp2_Co1

Here self must be an involution 𝑔 in the subgroup 𝐺𝑥0 of the Monster. This function performs the same
computation as the corresponding method in class mmgroup.Xsp2_Co1. It returns a pair (iclass, a)
such that ℎ = 𝑎−1𝑔𝑎 is a (fixed) representative of the class of 𝑔 in the group 𝐺𝑥0. Here h is described by
the integer iclass as documented in the corresponding method mentioned above.

If group is None (default) then a is an instance of the same class as g.

copy()

Return a deep copy of the group element

half_order(max_order=119)
Return the (halved) order of the element of the monster group

The function returns a pair (o, h), where o is the order of the element.

If o is even then the function returns the pair (o, h), where h is the element raised to to the (o/2)-th
power. Otherwise the function returns the pair (o, None).
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Parameter max_order is as in function check_mm_order.

If h is in the subgroup 𝐺𝑥0‘ then h is returned as a word in the generators of that subgroup.

half_order_chi(ntrials=40)
Return order and some character information of the element

This method is deprecated. use method chi_powers instead!

The function returns a triple (o, chi, h), where o is the order of the element 𝑔 of the monster given by
self.

If the order 𝑜 of 𝑔 is odd then the triple (o, None, None) is returned.

If the order of 𝑔 is even then we return the triple (o, chi, h). Here h is an element ℎ of M such that
𝑧 = ℎ−1𝑔𝑜/2ℎ is the standard 2A or 2B involution as in method conjugate_involution.

If 𝑔 powers up to a 2B involution then chi is equal to the character of 𝑢 = ℎ−1𝑔ℎ. Here the character of
the element 𝑢 of 𝐺𝑥0 is returned as a quadruple as in method chi_G_x0.

If 𝑔 powers up to a 2A involution then chi is equal to to None.

in_G_x0()

Check if the element is in the subgroup 𝐺𝑥0

The function returns True if this is the case. If this is the case then the element is converted to a word in
the generators of 𝐺𝑥0.

This method uses geometric information about the Leech lattice taken from [Iva99].

in_N_x0()

Check if the element is in the subgroup 𝑁𝑥0

The function returns True if this is the case. If this is the case then the element is converted to a word in
the generators of 𝑁𝑥0.

in_Q_x0()

Check if the element is in the subgroup 𝑄𝑥0

The function returns True if this is the case. If this is the case then the element is converted to a word in
the generators of 𝑄𝑥0.

is_reduced()

Return True if the element of the monster group is reduced

An element g of the monster group represented by an instance of this class may be reduced by calling
g.reduce().

property mmdata

Return the internal representation of the group element

Internally, an element of the monster group is represented as an array of unsigned 32-bit integers, where
each entry of the array describes a generator. See section Header file mmgroup_generators.h for details.

order(max_order=119)
Return the order of the element of the monster group

We use the method in [LPWW98], section 7, for computing the order of an element of the monster.

If the argument max_order is present then the order of the element is checked up to (and including)
max_order only. Then the function returns 0 if the order is greater than max_order. By default, the
function returns the exact order of the element.
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reduce()

Reduce a group element

This method reduces the group element in place. The reduced form of an element of the Monster is unique;
i.e. it depends on the value of the element only, and not on its representation as a word of generators.

The following methods of this class reduce an instance of this class: as_int(). Converting an instance of
this class to a string, by using method __str__() or the built-in function str(), also performs a reduction
prior to the conversion.

Other methods designed for internal purposes, e.g. as_tuples() or mmdata, may or may not reduce an
instance of this class. The result of a group operation may or may not be reduced.

Note that the reduction of an element of the Monster is a time-comsuming operation, so that we’d better do
it in a lazy way.

Finding an optimal or shortest representation of an element as a word of generators is beyond our current
capabilties. Also, the reduction process depends on many internal details. Thus a future version of this
package may return a different reduced form of an element of the Monster.

1.4.6 Functions dealing with elements of the Monster group

mmgroup.MM_from_int(n)
Obtain an element of the Monster from its number n

if g is an instance of class MM then we have

MM_from_int(g.as_int()) == g

1.4.7 Generating random elements of certain subgroups of the Monster

In this section we present various subgroups of the Monster known by the mmgroup package. Each of these groups is
labelled ba a string. In the documentation of class MM we have already seen the basic way how to generate a random
element of a subgroup of the Monster. E.g. calling method MM('r', 'G_x0') generates an element of the subgroup
𝐺𝑥0 of structure 21+24.Co1. We may use some other names instead of 'G_x0' for generating random elements in other
subgroups of the Monster. Details will be given in the following subsections.

At present, these names are used to generate random elements of the corresponding subgroup. In future versions of
mmgroupwe may also deal with constructive membership testing in these groups, and with intersections of these groups.
So we will only label groups, where the embedding of this group in the Monster is sufficiently well understood.

Describing a random subgroup of the Monster

The subgroups of the Monster recognized by the mmgroup package fall in two (not necessarily disjoint) categories.
There are small subgroups that are given by the sets of their generators; and there are large 2-local subgroups which
are given by their centralizers. Each subgroup has one or more names; and it is described in the following two sections.

The intersection of two groups is obtained by joining their names with an '&' character. E.g, 'G_x0 & N_0' means
the intersection of the two groups with names 'G_x0' and 'N_0'. We have chosen the definition of the subgroups
carefully, so that at least in principle their intersections can be computed.

But not all possible computations have been implemented. For each group there is a column ‘Supported’ in the following
tables, with an entry ‘full’, ‘yes’, or ‘no’. If all groups in a tuple are supported ‘full’ then we may compute intersections
of these groups. If a group has an entry ‘yes’ then we may use that group. Otherwise using that group might lead to an
error.
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A function dealing with the name of a subgroup may raise NotImplementedError if that subgroup is not supported.

Caution:

The user should check the corresponding entry ‘Supported’ in the tables in the follwing two subsections before using
the name of a group! Using a name of a group that is not supported might fail without notice!

Some small subgroups of the Monster

The following small subgroups of the Monster are recognized:

Table 15: Some small subgroups of the Monster

Name Structure Generators Supported
N_0 22+11+22.(𝑆3 ×𝑀24) 𝑥𝑑, 𝑦𝑑, 𝑥𝛿, 𝑥𝜋, 𝜏 full
N_0_e 22+11+22.(3 ×𝑀24) 𝑥𝑑, 𝑦𝑑, 𝑥𝛿, 𝑥𝜋, 𝜏, 𝛿 even full
N_x0 21+24+11.𝑀24 𝑥𝑑, 𝑦𝑑, 𝑥𝛿, 𝑥𝜋; equal to 𝐺𝑥0 ∩𝑁0 full
N_x0_e 22+11+22.𝑀24 𝑥𝑑, 𝑦𝑑, 𝑥𝛿, 𝑥𝜋, 𝛿 even full
Q_x0 21+24 𝑥𝑑, 𝑥𝛿 no
AutPL 211.𝑀24 𝑥𝛿, 𝑥𝜋 no

Notation for the generators is as in mm_group.

Large 2-local subgroups of the Monster

We have implemented (or will implement) the following 2-local subgroups of the Monster:

Table 16: Large 2-local subgroups of the Monster

Name Structure Normalizer of group generated by Supported
G_x0, G_1 21+24.Co1 𝑥−1 full
N_0, G_2 22+11+22.(𝑆3 ×𝑀24) 𝑥−1, 𝑥±Ω full
G_3 23+6+12+18.(𝐿3(2) × 3𝑆6) 𝑥−1, 𝑥±Ω, 𝑥𝜔 no
G_5t 25+10+20.(𝑆3 × 𝐿5(2)) 𝑥−1, 𝑥±Ω, 𝑥𝜔, 𝑥{0,1,4,5}, 𝑥{0,2,4,6} no
G_5l ? 𝑥−1, 𝑥±Ω, 𝑥𝜔, 𝑥{0,1,4,5}, 𝑥{0,2,4,7} no
G_10 210+16.Ω+

10(2)
𝑥𝑑, 𝑦𝑑, 𝑥𝑖𝑗 , 0 ≤ 𝑖 < 𝑗 < 8,

𝑑 ∈ {−1,±Ω, 𝑑8}

no

B 2.𝐵 𝑥{2,3} yes
2E_6 22.2𝐸6(2) : 𝑆3 𝑥{2,3}, 𝑥{2,4}, 𝑥{3,4} no

Notation is as in the previous section. Furthermore, 𝑑8 is the standard octad {0, 1, 2, 3, 4, 5, 6, 7}. 𝜔 is the element of
the Golay cocode given by the tetrad {0, 1, 2, 3} as in [Sey20].

The names G_x0 and N_0 are adopted from [Con85]. The names and structures of G_1, G_2, G_3, G_5t, G_5l and
G_10 are taken from [Iva09], Chapter 4.1 et seq. We have G_1 = G_x0 and G_2 = N_0. The other names indicate the
large simple subgroups involved in that group. Note that all these subgroups are maximal in the Monster, except for
G_5l.

34 Chapter 1. The mmgroup API reference



mmgroup, Release mmgroup v1.0.0

1.4.8 Long-term stable storage of elements of the Monster group

The mmgroup package has been used in several research projects. In some of these projects, elements of the Monster
group have been stored permanently in a file or published in a research paper. Here it is important to understand how
elements of the Monster should be stored permanently, and how they should be reread into an application using a
different version of the mmgroup package.

Short recommendation:

Always convert elements of the Monster group to strings before storing them permanently or publishing them! Always
convert such strings to instances of class MM before using them!

Detailed explanation:

For permanent storage, an element of the Monster given as an instance of class MM should be converted to a string by
using one of the standard python functions str or print. We will ensure that future versions of the mmgroup package
can interpret such a string correctly. Here Release 0.0.8 of the mmgroup package is interoperable with all later releases.
The standard way to convert such a string back to an instance of class MM is to apply the constructor of that class to that
string.

Comparing elements of the Monster by comparing strings is not feasible. Here the strings should be converted to
instances of class MM before comparing them. One reason for this restriction is that at present we do not know how to
find a shortest possible reduced form of an element. So future versions of mmgroup may implement better reduction
algorithms.

Method as_int of class MM converts an element of the Monster group to an integer. It is ok to compare two such integers
when they have been generated by the same version of the mmgroup package. When switching to a new version, such
integers should be converted to instances of class MM using function MM_from_int in the mmgroup package; and then
they should be converted to strings. Pickling instances of class MM with the standard python module pickle is also
discouraged, when switching to another version of the mmgroup package.

1.5 The representation of the Monster group

We deal with the 196884-dimensional representation of the monster.

The monster M has a 196884-dimensional representation 𝜌 with coefficients in Z[ 12 ], see [Con85]. Representation 𝜌
is called 196884𝑥 in [Con85]. We obtain a modular representation 𝜌𝑝 of M by reducing the matrix coefficients of the
representation 𝜌 modulo an odd number 𝑝. The representation 𝜌𝑝 can be implemented very efficiently if 𝑝+1 is a small
power of two. The current version of the mmgroup package supports the representations 𝜌𝑝 of M for p = 3, 7, 15,
31, 127, 255. In the sequel we are a bit sloppy, calling 𝜌𝑝 a vector space also in cases p = 15, 255. The user may
select these values for obtaining representations modulo 5 and 17, respectively.

One purpose of the mmgroup package is to give the user the capability to compute in the 196884-dimensional repre-
sentation 𝜌𝑝 of the monster group M.

For calculating in 𝜌𝑝 the user may create an instance of class MM that models an element g of the monster group M
as described in section The Monster group. Then the user may create an instance v of class MMVector that models a
vector in 𝜌𝑝, with p as above. The element g of M acts on the vector v by right multiplication.
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1.5.1 Creating basis vectors of the representation space 𝜌𝑝

By construction of 𝜌𝑝 it is natural to label a basis vector of 𝜌𝑝 by a tuple (tag, i0, i1) with integers i0, i1, as
described in the next section. Here tag is a single capital letter and indices i0, i1 are unsigned integers; these three
quantities describe a basis vector of the space V.

To create a basis vector of 𝜌𝑝 corresponding to the tuple (tag, i0, i1) the user may call the constructor
MMVector(p, tag, i0, i1).

For a fixed characteristic p the function MMV(p) returns an object corresponding to the vector space 𝜌𝑝. Thus the
sequence

>>> from mmgroup import MMV
>>> V = MMV(p)
>>> v = V(tag, i0, i1)

creates the same basis vector v as the statement v = MMVector(p, tag, i0, i1).

1.5.2 Description of the basis vectors of the representation space

The following table shows the tags available for describing basis vectors. The column Vector in that table shows the
basis vector in the notation of [Sey20]. The column Tuple shows the basis vector as a tuple (tag, i0, i1).

Table 17: Basis vectors of the representation of the monster

Vector Tuple Remarks
(𝑖𝑗)1 ('A',i,j) 0 <= i,j < 24; we have (𝑖𝑗)1 = (𝑗𝑖)1.
𝑋𝑖𝑗 ('B',i,j) 0 <= i,j < 24, i != j; we have 𝑋𝑖𝑗 = 𝑋𝑗𝑖.
𝑋+

𝑖𝑗 ('C',i,j) 0 <= i,j < 24, i != j; we have 𝑋+
𝑖𝑗 = 𝑋+

𝑗𝑖 .
𝑋+

𝑑·𝛿 ('T',o,s) o and s can be obtained as follows. Let, x = SubOctad(d, delta). Then x.
vector_tuples() returns the tuple (1, 'T', o, s).
𝑑 ∈ 𝒫 , 𝛿 ∈ 𝒞*, 𝑑 an octad, 𝛿 ⊂ 𝑑, 𝛿 even.
We have 0 <= o < 759, 0 <= s < 64.

𝑋+
𝑑·𝑖 ('X',d,i) 0 <= d < 2048, 0 <= i < 24,

d represents the element PLoop(d) of the Parker loop 𝒫
𝑑+ ⊗1 𝑖 ('Z',d,i) d and i as in case ('X',d,i)
𝑑− ⊗1 𝑖 ('Y',d,i) d and i as in case ('X',d,i)

Remarks

• The space 𝜌𝑝 is an orthogonal space. Two basis vectors are orthogonal except when equal or opposite. The basis
vectors (𝑖𝑗)1 have norm 2 in case 𝑖 ̸= 𝑗. All other basis vectors have norm 1.

• In the tuple ('T',o,s) the integers o and s describe the instance SubOctad(o, s) of class XLeech2. Here o
and s may be anything that is accepted as input for SubOctad(o, s)

• In the tuples ('X',d,i), ('Y',d,i), ('Z',d,i), the input d may be an instance of class PLoop or anything
such that PLoop(d) is an instance of class PLoop. For an instance d of class PLoop we have:

– ('X',d,i) == -('X',-d,i) == ('X',~d,i) ,

– ('Y',d,i) == -('Y',-d,i) == -('Y',~d,i) ,

– ('Z',d,i) == -('Z',-d,i) == ('Z',~d,i) .

The value of ('X',~d,i) has been set by convention; the other equations are forced.
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• The basis vector 𝑑+⊗1 𝑖 in [Sey20] is equal to the basis vector (−1)|𝑑/4| ·𝑑+⊗1 𝑖 in [Con85]. This modification
simplifies the formulas for the operation of the element 𝜉 of M on 𝜌𝑝.

• A first or second index following a tag may be 'r', indicating a random integral index. Any omitted index after
a given index 'r' is interpreted as 'r'. For tags 'A', 'B', 'C', 'T' the second index should be 'r' or
omitted if the first index is 'r', since in these cases the two indices are not sufficiently independent.

1.5.3 Representing a vector as a list of tuples

For creating an arbitrary (but yet sparse) vector in 𝜌𝑝 the user may call MMVector(p, data_list), where data_list
is a list of tuples (factor, tag, i0, i1). Here (tag, i0, i1) describes a unit vector and the (optional) integer
factor is a scalar factor for that unit vector. Then the constructor returns the linear combination of the unit vectors
given in the list.

In order to generate a random multiple of a basis vector, inside a list of tuples, the (optional) component factor of a
tuple can be set to one of the following values:

• 'u': equivalent to 1

• 's': a factor 1 or -1 selected at random

• 'n': a random nonzerodivisor modulo p

• 'r': a random integer modulo p

1.5.4 Operations on vector in the representation 𝜌𝑝

Vector addition, subtraction and scalar multiplication can be done with operators +, - and * as usual. Elements of the
monster group operate on vectors by right multiplication. Only vectors modulo the same characteristic p can be added.

The following code example generates an element g of the monster group and a vector v in the vector space 𝜌3 and
displays the result g * v of the operation of g on v. Note that a basis vector (tag, i0, i1) is displayed in the form
tag_i0_i1. For a displayed index i0 or i1 the suffix h means hexadecimal notation.

>>> # An instance of class MM represents an element of the monster
>>> from mmgroup import MM
>>> # Function MMV is used to create a representation space
>>> from mmgroup import MMV
>>> # Create representation space V for the monster (modulo 3)
>>> V = MMV(3)
>>> # Create an element g of the monster group
>>> g = MM([('d', 0x123), ('p', 217821225)])
>>> # Create a vector v in the representation space V
>>> v = V([('T', 712, 13), (2, 'X', 0x345, 13)])
>>> # Let g operate on v by right multiplication
>>> print(v * g)
MV<3;-T_444_0fh+X_244h_11>
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1.5.5 Special tags for creating vectors in the representation 𝜌𝑝

Apart from the standard tags A, B, C, T, X, Y, and Z, the constructor of class MMVector accepts a variety of special tags.
Details are given in the following list:

Table 18: Special tags for constructing a vector

tag, i0, i1 Evaluates to
('D', i0) Shorthand for ('A', i0, i0)
('I', i0, i1) Shorthand for the sum of the basis vectors

('A', i0, i0) + ('A', i1, i1) - ('A', i0, i1) - 2 ('B', i0, i1),
see remark below.

('J', i0, i1) Shorthand for the sum of the basis vectors
('A', i0, i0) + ('A', i1, i1) - ('A', i0, i1) + 2 ('B', i0, i1),
see remark below.

('U') Tag 'U' (without any further parameters) stands for the sum
('A', 0, 0) + ('A', 1, 1) + . . . + ('A', 23, 23).

('E', i) This is the basis vector with linear index i.
See the following subsection for details.

('S', data) Here data is an array-like object (as defined in the numpy package) that encodes a
vector in sparse representation as an array of unsigned 32-bit integers.
This is for internal use. For details see the following subsection:
Sparse representation of vectors in 𝜌𝑝.

('V', data) Here data is an array like object (as defined in the numpy package) that encodes a
one-dimensional array of integers of length 196884. The order of the entries is as in
the next section.

('R') Tag 'R' (without any further parameters) stands for the generation of a uniform dis-
tributed random vector.

(i, v), i integer Here i is an integer and v is a vector, i.e.an instance of class MMVector. Then the
vector i * v is generated. This is useful for extending the modulus p of a vector, see
remark below.

Remarks

The vectors labelled by ('I', i0, i1) and ('J', i0, i1) are axes of the elements 𝑥𝛿 and 𝑥−1𝑥𝛿 of the monster,
respectively, see [Con85]. The centralizers of these elements and also of their axes in the monster have structure 2 ·𝐵,
where 𝐵 is the Baby Monster, see [Asc86], [Con85], [Iva09] for background. E.g. the axes 𝑣+ and 𝑣− in [Sey22] may
be obtained as MMVector(15, 'I', 2, 3) and MMVector(15, 'J', 2, 3), respectively.

The modulus of a vector can be extended as follows. Assume that v is a vector in 𝜌3, given as an instance of class
MMVector. Then w = 5 * v is a well-defined vector in 𝜌15. Vector w can be constructed as follows: V15 = MMV(15);
w = V15(5, v). Note that the construction w = V15(5*v) leads to an error, since 5*v is defined modulo 3, but not
modulo 15.
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1.5.6 Linear order of the basis vectors

By construction of the representation 𝜌𝑝, it is most natural to use a tuple (tag, i0, i1) for indexing a basis vector
of 𝜌𝑝. There is also a linear order of these entries. Such a linear order is required e.g. for expressing a vector in 𝜌𝑝 as
an array of integers modulo 𝑝. Therefore an index given by a tuple (tag, i0, i1) is mapped to linear index 0 <= i
< 196884. Legal standard tuples are listed in the following table:

Table 19: Conditions for indices i0, i1

Tag Condition for i0 Condition for i1
'A' 0 <= i0 < 24 0 <= i1 < 24
'B', 'C' 0 <= i0 < 24 0 <= i1 < 24, i1 != i0
'T' 0 <= i0 < 759 0 <= i1 < 64
'X', 'Y', 'Z' 0 <= i0 < 2048 0 <= i1 < 24

For tag = 'A', 'B', 'C', we also have (tag, i0, i1) == (tag, i1, i0).

The linear order of the tuples (tag, i0, i1) is as follows:

offset 0:

(A,0,0), (A,1,1), ..., (A,23,23)

offset 24:

(A,1,0),

(A,2,0), (A,2,1)

. . .
(A,23,0), (A,23,1), ..., (A,23,22)

offset 300:

Tuples (B,i0,i1), same order as tuples (A,i0,i1) for i0 > i1

offset 576:

Tuples (C,i0,i1), same order as tuples (A,i0,i1) for i0 > i1

offset 852:

(T, 0,0), (T, 0,1), ..., (T, 0,63)

(T, 1,0), (T, 1,1), ..., (T, 1,63)

. . .
(T,758,0), (T,758,1), ..., (T,758,63)

offset 49428:

(X, 0,0), (X, 0,1), ..., (X, 0,23)

(X, 1,0), (X, 1,1), ..., (X, 1,23)

. . .
(X,2047,0), (X,2047,1), ..., (X,2047,23)

offset 98580:

Tuples (Z,i0,i1), same order as corresponding tuples (X,i0,i1)

offset 147732:

Tuples (Y,i0,i1), same order as corresponding tuples (X,i0,i1)
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1.5.7 Sparse representation of vectors in 𝜌𝑝

Internally, a vector 𝜌𝑝 is sometimes given in sparse representation. This is useful for sparse vectors containing many
zero entries. In sparse representation the vector is given as an array of unsigned 32-bit integers. Here each entry of the
array encodes a multiple of the basis vector. Such an entry it interpreted as follows:

Table 20: Bit fields in an entry of a sparse representation

Component tag i0 i1 factor
Bits 27 - 25 24 - 14 13 - 8 7 - 0

This corresponds to the tuple (factor, tag, i0, i1) which denotes a multiple of a basis vector as described in
subsection Representing a vector as a list of tuples.

Tags are mapped to integers as follows:

Table 21: Mapping of integers to tags

'A' 'B' 'C' 'T' 'X' 'Z' 'Y'
1 2 3 4 5 6 7

1.5.8 Other data types accepted as tags for vectors in 𝜌𝑝

Some data types are accepted as tags and interpreted as described in the following table. In this case parameters i0, i1
after a tag must not be set.

Table 22: Legal types for constructing a vector

type Evaluates to
List of tuples This evaluates to a vector as described in subsection Representing a vector as a

list of tuples.
An entry of such a list may also be an instance of class MMVector or a string.

class MMVector A deep copy of the given vector is returned.
class XLeech2 If tag is of type XLeech2 then the (possibly negative) basis vector corresponding

to that tag in 𝑄𝑥0 is created.
str For an vector v in V we have V(str(v)) == v.

This is helpful for rereading printed vectors.
('Axis', g) If a pair containing the string 'Axis' and a 2A involution g in the Monster group

is given then we contruct the axis corresponding to that involution (with norm 8)
as described in [Con85]. Here g should be an instance of class XLeech2 or MM . A
integer or string g describes the element MM('q', g).

1.5.9 Python classes implementing the representation of the Monster group

class mmgroup.MMVector(p, tag=0, i0=None, i1=None)
Models a vector in a representation of the monster group.

The construction of vectors in the representations 𝜌𝑝 of the monster group (using e.g. the constructor of this
class) is documented at the beginning of section The representation of the Monster group. There a basis vector
of that representation is described as a tuple (tag, i0, i1), where tag is a single capital letter and i0, i1 are
integers. So we may invoke the constructor of this class as follows:
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Parameters

• p – Modulus p of the representation 𝜌𝑝.

• tag – Tag of the unit vector to be constructed. In the standard case this is a single capital
letter describing the type of the basis vector.

• i0 – First index in the tuple describing the basis vector.

• i2 – Second index in the tuple describing the basis vector.

Linear operations can be used for for creating linear combination of unit vectors. This is just the simplest case
of the construction of a vector in 𝜌𝑝. Section The representation of the Monster group contains a large number
of further possibilities for creating such vectors.

Addition and subtraction of vectors in the same space work as usual. This is also the case for scalar multiplication
with integers. An element g of the monster group (given as an instance of class MM) operates on a vector v (given
as an instance of this class) by right multiplication.

An entry of a vector v (given as an instance of this class) may be addressed as v[tag, i0, i1], where tag is
a single letter in the string ABCTXYZD and i0 and i1 are integers, such that the tuple (tag, i0, i1) describes
a basis vector. Getting and setting entries of a vector is as in the numpy package. Here i0 and i1 may also be
slices of integers in the same way as in numpy arrays. Depending on the tag, the value i0 or i1 may also be a
single instance of the appropriate class, as described in the remarks after table Basis vectors of the representation
of the monster .

The entries of vector v also have a linear order as described at the beginning of section The representation of the
Monster group. Here v['E', i] is the i-th entry in that order. Index i may also be a slice of integers in the
same way as in a one-dimensional numpy array.

The internal representation of a vector v in this class is not part of the public interface. Use v['E'] to convert
v to an one-dimensional array of 8-bit integers of length 196884.

as_sparse()

Return vector in sparse representation

The sparse representation of a vector is returned as a one-dimensional numpy array of 32-bit integers. Here
each entry of that array represents a nonzero component of the vector. Such an entry it interpreted as
described in method from_sparse of class MMSpace.

Entries with value zero are dropped.

as_tuples()

Return vector in tuple representation

The function returns a list of tuples (factor, tag, i0, i1). Here (tag, i0, i1) describes a basis
vector and value is the coordinate of that vector.

Entries with coordinate zero are dropped.

mul_exp(g, e=1, break_g=False)
Multiply the vector with g ** e inplace

Here g is an element of the monster group represented as an instance of class MM and e is an integer. The
vector is updated and the updated vector is returned.

Afterwards, the vector contains an attribute last_timing containing the run time of this operation in
seconds. This is useful for benchmarking.

By default, we try to simplify the expression g ** e before multiplying it with the vector. If break_g is
set, we always do abs(e) multiplications with g or with its inverse.
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projection(*args)
Return projection of the vector v onto a subspace.

Each argument describes a subspace of this space V. The projection of the vector to the space W spanned by
all these subspaces is returned.

In the current version each argument must be a tuple (tag, i0, i1) that describes a subspace generated
by a basis vector. A legal tag is letter in the string ABCTXYZD, as explained in table Basis vectors of the
representation of the monster and class MMSpace.

class mmgroup.MMSpace(*args, **kwds)
Models a 196884-dimensional representation of the monster group

This class contains a collection of functions for manipulating vectors in the representation 𝜌𝑝 of the monster
group. Such vectors are instances of class MMVector. Most of these function are used implicitly in the operators
applied to these vectors.

Some of these function may be helpful for the user; so we document them in the mmgroup API reference.

static index_to_short(tag, i0=-1, i1=-1)
Convert index to a short Leech lattice vector

If tag is an integer, this is interpreted a linear index for a basis vector in the representation 𝜌𝑝 as in method
tuple_to_index. Otherwise the tuple (tag, i0, i1) is interpreted a standard index for such a basis
vector. If tag is an instance of class MMVector, which is a nonzero multiple of a basis vector, then that
basis vector is taken.

Some but not all of these basis vectors correspond to short vector in the Leech lattice up to sign. If this
is the case then the function returns a short vector of the Leech lattice as a numpy array of signed 32-bit
integers of length 24. The norm of the returned vector is 32.

The function raises ValueError if the basis vector in 𝜌𝑝 does not correspond to a short vector.

The sign of the short vector is undefined, but two calls referring to the same basis vector return the same
short vector.

classmethod index_to_tuple(index)
Convert linear index to tuple (tag, i0, i1)

This method reverses the effect of method tuple_to_index. Given a linear index 0 <= i < 196884 for
a basis vector, the function returns that index as a tuple (tag, i0, i1) with tags one letter of the string
"ABCTXYZ" and integers i0, i1.

See method tuple_to_index for details.

If index is an instance of class MMVector, which is a nonzero multiple of a basis vector, then the index of
that basis vector is taken.

classmethod tuple_to_index(tag, i0=-1, i1=-1)
Convert tuple (tag, i0, i1) to a linear index

Remarks:

The tuple ('D', i0) is accepted as a shorthand for ('A', i0,i0).

A tuple ('E', i0) means a linear index i0, i.e. this method returns i0 on input ('E', i0), for 0 <=
i0 < 196884.

If tag is an instance of class MMVector, which is a nonzero multiple of a basis vector, then the linear index
corresponding to that basis vector is returned.

42 Chapter 1. The mmgroup API reference



mmgroup, Release mmgroup v1.0.0

1.5.10 Auxiliary functions for the representation of the Monster group

mmgroup.characteristics()

Return list of all characteristics p supported

mmgroup.MMV(p)
Return an object corresponding to the space 𝜌𝑝
Here characteristic p is as in the constructor of class MM . Thus the sequence

>>> V = MMV(p)
>>> v = V(tag, i0, i1)

returns the same vector in 𝜌𝑝 as the statement MMVector(p, tag, i0, i1).

Function characteristics in module mmgroup returns the list of legal values for the characteristic p.

Technically, MMV(p) is the partial application of the constructor of class MMVector to the number p.

mmgroup.mmv_scalprod(v1, v2)
Return scalar product of two vectors

The function returns the scalar product of the vectors 𝑣1 and 𝑣2. These two vectors must be instances of class
MMVector; and they must be vectors in the same representation 𝜌𝑝.

mmgroup.order_vector()

Return the precomputed order vector

The function returns the precomputed order vector 𝑣1 (which is an element of the representation 𝜌15 of the
monster) as an instance of class MMVector.

The properties required for such a vector 𝑣1 are defined in [Sey22].

1.5.11 Long-term stable storage of vectors of the representation

The representations 𝜌𝑝 of the Monster are considered as auxiliary tools for computing in the Monster. We do not
guarantee the interoperability of vectors in these representations between different versions of the mmgroup package.
The internal representation of such vectors is likely to change in the near future. A user with a serious need for such
interoperability can consult the author for advice.

1.6 The subgroup 𝐺𝑥0 of the Monster and the Clifford group

The section describes the fast computation in a certain subgroup 𝐺𝑥0 of structure 21+24.𝐶𝑜1 of the Monster M in
detail. A person who simply wants do do calculations in the Monster group need not read this section.
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1.6.1 Introduction

In Conway’s construction [Con85] the MonsterM has a subgroup𝐺𝑥0 of structure 21+24
+ .Co1. There𝐺𝑥0 is constructed

as a diagonal product of the two groups Co0 of structure 2.Co1 and 𝐺(4096𝑥). 𝐺(4096𝑥) is also of structure 21+24
+ .Co1

but not isomorphic to 𝐺𝑥0. Here 21+24
+ means an extraspecial group of plus type. Co0, and Co1 are the automorphism

groups of the 24-dimensional Leech lattice and of the Leech lattice modulo 2, see e.g. [CCN+85] or [CS99] for
background.

Computation in Co0 is easy since that group has a 24-dimensional rational representation. The smallest real represen-
tation of the group 𝐺(4096𝑥) has dimension 4096, so naive computation in that representation is rather inefficient.

The group 𝐺(4096𝑥) is a subgroup of the real Clifford group 𝒞12. The real Clifford group 𝒞𝑛 of structure
21+2𝑛
+ .GO+

2𝑛(2) is defined e.g. in [NRS01]. 𝒞12 is a subgroup of the complex Clifford group 𝒳𝑛 of structure
1
2 (21+2𝑛

+ × 𝑍8).Sp2𝑛(2), which is also defined in [NRS01]. Here a factor 1
2 means identification of central subgroups

of order 2 of the factors of a direct product. GO+
2𝑛(2) and Sp2𝑛(2) are the orthogonal subgroup (of +-type) and the

symplectic subgroup of the group 𝐺𝐿2𝑛(2) of invertible 2𝑛×2𝑛-matrices with entries in F2, as defined in [CCN+85].

Effective computation in the group 𝒳𝑛 has received a lot of attention from the theory of quantum computation, see e.g.
[AG04]. In the next section we present efficient algorithms for computing in 𝒳𝑛 and in its 2𝑛 dimensional complex
representation.

1.6.2 Computation in the Clifford group

In this section we present effective algorithms for computing in the complex Clifford group of structure 1
2 (21+2𝑛

+ ×
𝑍8).Sp2𝑛(2) defined in [NRS01]. Here a factor 1

2 means identification of central subgroups of order 2 of the factors of
a direct product as in [CCN+85].

The complex Clifford group 𝒳𝑛 has a unitary complex representation of dimension 2𝑛 which has been studied in the
theory of quantum computation, see e.g. [AG04]. For calculations in the monster group it would be sufficient to deal
with the subgroup 𝒞𝑛 of𝒳𝑛 consisting of the real matrices of that representation. However, the extra effort for extending
the real to the complex case is marginal, and using our algorithms for the complex Clifford group might be useful in
the theory of quantum computation.

Usually, in quantum physics it suffices to calculate in a unitary group up to a scalar multiple of the unit matrix. Therefore
we cannot simply cut an paste existing algorithms for calculating in𝒳𝑛 used in quantum physics. We keep the following
exposition independent of the theory of quantum computation, but we do not hide the fact that the main ideas are strongly
influenced by that theory.

We present an algorithm that performs matrix multiplication in 𝒳𝑛 in 𝑂(𝑛)3 bit operations. Therefore we store an
element of 𝒳𝑛 in 𝑂(𝑛)2 bits. In case 𝑛 = 12 this is considerably more efficient than dealing with complex 4096×4096
matrices.

We will introduce certain complex-valued functions defined on a Boolean vector space F𝑛
2 which we will call quadratic

mappings. Such a function has a natural interpretation as a vector in C2𝑛 . It will turn out that quadratic mappings are
closed under tensor products and under tensor contraction. Since matrix multiplication is just a special case of tensor
contraction, we may consider quadratic mappings on F𝑛

2 × F𝑛
2 as a monoid of 2𝑛 × 2𝑛 matrices closed under matrix

multiplication. It turns out that the unitary matrices in this monoid are just a representation of the Clifford group 𝒳𝑛.

44 Chapter 1. The mmgroup API reference



mmgroup, Release mmgroup v1.0.0

Quadratic mappings

Let 𝑉 = F𝑛
2 be a Boolean vector space and T be the unit circle in the set C of the complex numbers. Then F𝑛

2 is an
additive and T is a multiplicative Abelian group. For any mapping 𝑓 : 𝑉 → T define the mapping ∆𝑓 : 𝑉 × 𝑉 → T
by

∆𝑓(𝑥, 𝑦) = 𝑓(𝑥 + 𝑦) · 𝑓(𝑥)−1 · 𝑓(𝑦)−1 · 𝑓(0).

A mapping 𝑔 : 𝑉 → T is bilinear if

𝑔(𝑥1 + 𝑥2, 𝑥3) = 𝑔(𝑥1, 𝑥3) · 𝑔(𝑥2, 𝑥3),

𝑔(𝑥1, 𝑥2 + 𝑥3) = 𝑔(𝑥1, 𝑥3) · 𝑔(𝑥1, 𝑥3).

Then we obviously have 𝑔(𝑥1, 𝑥2) = ±1 and 𝑔(0, 𝑥2) = 𝑔(𝑥1, 0) = 1. Thus there is a unique symmetric bilinear form
𝛽(𝑔) : 𝑉 × 𝑉 → F2 with 𝑔(𝑥1, 𝑥2) = (−1)𝛽(𝑔)(𝑥1,𝑥2). A function 𝑞 : 𝑉 → T is called quadratic if 𝑞(0) = 1 and ∆𝑞
is bilinear. For a quadratic function 𝑞 all functional values of 𝑞 are fourth roots of unity. We write 𝛽(𝑞) for 𝛽(∆𝑞). Put

𝑅8 = {2𝑒/2 · 𝑤 | 𝑒 ∈ Z, 𝑤 ∈ C, 𝑤8 = 1} ∪ {0} .

Let 𝑒 ∈ 𝑅8, let 𝑞 : F𝑚
2 → T be a quadratic function, and let 𝑎 : F𝑚

2 → F𝑛
2 be an affine mapping. Then we define a

function 𝑓 = 𝑓(𝑒, 𝑎, 𝑞) : F𝑛
2 → C by

𝑓(𝑒, 𝑎, 𝑞)(𝑥) = 𝑒 ·
∑︁

{𝑦∈F𝑚
2 |𝑎(𝑦)=𝑥}

𝑞(𝑦). (1.1)

We call a function 𝑓(𝑒, 𝑎, 𝑞) satisfying (1.1) a quadratic mapping. We call the triple (𝑒, 𝑎, 𝑞) a representation of the
quadratic mapping 𝑓(𝑒, 𝑎, 𝑞). Occasionally we also consider quadratic mappings 𝑓(𝑒, 𝑎, 𝑞) where 𝑞 is a scalar multiple
of a quadratic function with 𝑞(0) ∈ 𝑅8. We sometimes abbreviate 𝑓(𝑒, 𝑎, 𝑞)(𝑥) to 𝑓(𝑥) if the meaning of 𝑒, 𝑎, 𝑞 is
clear from the context.

The following lemma is a direct consequence of the definition of a quadratic mapping.

Lemma 1:

Let 𝑔, 𝑔1 : 𝑉 = F𝑛
2 → C be quadratic mappings. Then

• For any affine mapping 𝑎 : F𝑛′

2 → F𝑛
2 the composition 𝑔 ∘ 𝑎 given by 𝑥 ↦→ 𝑔(𝑎(𝑥)) is a quadratic mapping on

F𝑛′

2 .

Hence the definition of a quadratic mapping on the affine space 𝑉 is invariant to translations and to basis trans-
formations of 𝑉 .

• The product 𝑔 · 𝑔1 of the functions 𝑔 and 𝑔1 is a quadratic mapping on 𝑉 .

• For any any affine subspace 𝑊 of 𝑉 restriction of 𝑔 to 𝑊 , and also characteristic function 𝜒𝑊 : 𝑉 → 𝑉 of the
subspace 𝑊 is a quadratic mapping.

• For any linear subspace 𝑊 of 𝑉 the function 𝑔(𝑊 ) : 𝑉/𝑊 → C given by 𝑥 ↦→
∑︀

𝑦∈𝑊 𝑔(𝑥 + 𝑦) is a quadratic
mapping.

A function 𝑓 : F2 → C has a natural interpretation as a vector in C2. Similarly, a function 𝑔 : F𝑛
2 → C has a natural

interpretation as a tensor in the tensor product (C2)⊗𝑛. If C2 has basis (𝑏0, 𝑏1) then the tensor corresponding to 𝑔 has
coordinate 𝑔(𝑖1, . . . , 𝑖𝑛) at the basis vector 𝑏𝑖1 ⊗ . . .⊗ 𝑏𝑖𝑛 of (C2)⊗𝑛. We call 𝑔 the coordinate function of the tensor.
If 𝑔 is a function F𝑛

2 → C and 𝑥𝑗 ∈ F𝑛𝑗

2 holds with
∑︀𝑘

𝑗=1 𝑛𝑗 = 𝑛 then we put 𝑔(𝑥1, . . . , 𝑥𝑘) = 𝑔(𝑥), where 𝑥 is the
concatenation of the bit vectors 𝑥1, . . . , 𝑥𝑘.

A vector (or a tensor) in a space over F𝑛
2 is called a quadratic state vector (or a quadratic state tensor) if its coordinate

function is a quadratic mapping. Using Lemma 1 we can easily show that tensor products and tensor contractions of
quadratic state vectors are quadratic state vectors. As we shall see later, they can easily be computed in practice. A
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matrix is a special kind of a tensor, and matrix multiplication is a special case of the contraction of a tensor product.
Thus the matrix product of two quadratic state matrices is also a quadratic state matrix.

For any affine mapping 𝑎 : F𝑚
2 → F𝑛

2 there is a unique linear mapping 𝑙(𝑎) that differs from 𝑎 by the constant 𝑎(0).
We write ker 𝑎 for ker 𝑙(𝑎). We call a representation (𝑒, 𝑎, 𝑞) of a quadratic mapping injective if ker 𝑎 = 0. We have:

Lemma 2:

Every quadratic mapping has an injective representation.

Proof

Let 𝑒 ∈ 𝑅8, 𝑎 : F𝑚
2 → F𝑛

2 , and 𝑞 a quadratic function on F𝑚
2 such that 𝑔 = 𝑓(𝑒, 𝑎, 𝑞) and 𝑚 is minimal. Assume

ker 𝑎 ̸= 0. Then we construct a tuple (𝑒′, 𝑎′, 𝑞′) with 𝑔 = 𝑓(𝑒′, 𝑎′, 𝑞′), such that the domain of 𝑎′ and of 𝑞′ is a proper
affine subspace of the domain of 𝑎.

Let 𝑣 ∈ ker𝐴 ∖ {0} and 𝑊 be a subspace of F𝑚
2 with ⟨𝑣⟩ ⊕ 𝑊 = F𝑚

2 . Then for 𝑤 ∈ 𝑊 we have 𝑞(𝑤 + 𝑣) =
𝑞(𝑤) · (−1)ℎ(𝑤) · 𝑟, with ℎ a linear form on 𝑊 given by ℎ(𝑤) = 𝛽(𝑞)(𝑣, 𝑤) and 𝑟 = 𝑞(𝑣)/𝑞(0) a fourth root of unity.
Since 𝑣 ∈ ker𝐴, we have

𝑓(𝑒, 𝑎, 𝑞)(𝑥) = 𝑒 ·
∑︁

{𝑦∈𝑊 |𝑎(𝑦)=𝑥}

𝑞(𝑦) + 𝑞(𝑦 + 𝑣) = 𝑒 ·
∑︁

{𝑦∈𝑊 |𝑎(𝑦)=𝑥}

𝑞(𝑦)𝑡(ℎ(𝑦)) ,

where 𝑡(𝑧) = 1 + 𝑟 · (−1)𝑧 for 𝑧 ∈ F2. Let 𝑊 ′ be the support of 𝑡 ∘ ℎ, i.e. 𝑊 ′ = {𝑦 ∈ 𝑊 | 𝑡(ℎ(𝑦)) ̸= 0}. In
case 𝑊 ′ = ∅ we have 𝑓(𝑒, 𝑎, 𝑞) = 0. Otherwise it suffices to show that 𝑊 ′ is an affine subspace of 𝑊 , and that the
restriction of 𝑡 ∘ ℎ to 𝑊 ′ is a quadratic function up to a scalar multiple in 𝑅8.

Since 𝑟 is a fourth root of unity, 𝑡(0) and 𝑡(1) are in 𝑅8. If ℎ is zero then 𝑡 ∘ ℎ is a constant function on 𝑊 .

If 𝑟 is an imaginary fourth root of unity then 𝑡(0) ̸= 0 and 𝑡(1)/𝑡(0) = ±
√
−1. Thus 𝑡 is a quadratic function on F2

up to the factor 𝑡(0). Since ℎ is linear, 𝑡 ∘ ℎ is also a quadratic function on 𝑊 .

If 𝑟 = ±1, ℎ ̸= 0, then the function 𝑡 ∘ ℎ is constant on 𝑊 ′, and we have 𝑊 ′ = kerℎ if 𝑟 = 1 and 𝑊 ′ = 𝑊 ∖ kerℎ if
𝑟 = −1.

q.e.d.

One of the basic challenges in this section is the effective computation of an injective representation of a quadratic
mapping from an arbitrary representation of that mapping. The proof of Lemma 2 suggests that this job can be done
by using standard methods of linear algebra, mainly over F2.

The complex Clifford group 𝒳𝑛 is a group which is defined in [AG04] and [NRS01]. It has a unitary representation in
(C2)⊗𝑛.

Lemma 3

The unitary complex quadratic state matrices representing endomorphisms of the space C2𝑛 make up a representation
of the complex Clifford group 𝒳𝑛 .

Sketch Proof

It is easy to see that all generators of 𝒳𝑛 in [NRS01] are unitary complex quadratic state matrices. The group 𝒳 ′
𝑛 of

such matrices is closed under multiplication. It is obviously closed under computing the inverse, which is the conjugate
transpose for a unitary matrix. Thus 𝒳𝑛 is a subgroup of 𝒳 ′

𝑛 . By Lemma 3 the group 𝒳 ′
𝑛 is finite. By Theorem 6.5 in

[NRS01] all finite supergroups of 𝒳𝑛 in the unitary group are generated by 𝒳𝑛 and a scalar multiple of the unit matrix
by a root of unity. Comparing the scalar multiples of the unit matrix in 𝒳𝑛 and 𝒳 ′

𝑛 yields 𝒳𝑛 = 𝒳 ′
𝑛.

q.e.d.
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Background from the theory of quantum computing

In the theory of quantum computation a state vector representing the state of 𝑛 qubits can be written as a vector in
(C2)⊗𝑛, where the 2𝑛 basis vectors of that space are labelled by the elements of F𝑛

2 . Here the 𝑛 qubits correspond to
the 𝑛 factors F2 of F𝑛

2 . In [AG04] the unit vectors which are also quadratic state vectors are called stabilizer states.
By Lemma 2 the product of a stabilizer state with a unitary quadratic state matrix is a stabilizer state. Thus Lemma 3
implies that the Clifford group 𝒳𝑛 stabilizes the stabilizer state vectors. In the theory of quantum computation this fact
is known as the Gottesman-Knill theorem.

In [AG04] there is a fast algorithm for calculating in the Clifford group 𝒳𝑛. As usual in quantum theory, this algorithm
ignores scalar factors in the matrix representation of 𝒳𝑛. This means that we have to create our own algorithm for
computing in 𝒳𝑛.

Implementation of quadratic mappings

Let 𝑔 = 𝑓(𝑒, 𝑎, 𝑞) : F𝑛
2 → C with 𝑒 ∈ 𝑅8, 𝑎 : F𝑚

2 → F𝑛
2 an affine mapping, and 𝑞 : F𝑚

2 → T. We implement the
quadratic mapping 𝑔 as a triple (𝑒,𝐴,𝑄).

Here 𝐴 is an (𝑚 + 1) × 𝑛 bit matrix representing 𝑎, and 𝑄 is a symmetric (𝑚 + 1) × (𝑚 + 1) bit matrix representing
𝑞. All vector and matrix indices start with 0 as usual in the C language. For 𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ F𝑚

2 , 𝑥0 = 1 and bit
matrices 𝐴,𝑄 as above we put:

𝑎(𝑥) = (𝑥0, . . . , 𝑥𝑚) ·𝐴 , 𝑞(𝑥) = exp

⎛⎝𝜋
√
−1/2 ·

𝑚∑︁
𝑗,𝑘=0

𝑄𝑗,𝑘𝑥𝑗𝑥𝑘

⎞⎠ .

We write
√
−1 for the imaginary unit, and we use the letters 𝑖, 𝑗, . . . as indices.

The user may consider a quadratic mapping 𝑔 : F𝑛
2 → C as a 2𝑛-dimensional complex vector, regardless of its repre-

sentation. In C or python its is convenient to write g[i] for the i-th component of such vector g, and to assume that
the index 𝑖 =

∑︀𝑛−1
𝑗=0 2𝑗 · 𝑖𝑗 , 𝑖𝑗 ∈ {0, 1} denotes the bit vector (𝑖𝑛−1, ...𝑖0) in F𝑛

2 . In accordance with that convention
we label the entries of the 𝑚 + 1 × 𝑛 bit matrix 𝐴 as follows:

𝐴 =

⎛⎜⎝ 𝐴𝑛−1,0 . . . 𝐴0,0

...
...

𝐴𝑛−1,𝑚 . . . 𝐴0,𝑚

⎞⎟⎠ .

Any affine mapping 𝑎 : F𝑚
2 → F𝑛

2 can be written as (𝑥1, . . . , 𝑥𝑚) ↦→ (1, 𝑥1, . . . , 𝑥𝑚) · 𝐴 for a suitable (𝑚 + 1) × 𝑛
bit matrix 𝐴 as above.

Wie label the entries of the symmetric 𝑚 + 1 × 𝑚 + 1 bit matrix 𝑄 as usual. We stress that all bits 𝑄𝑗,𝑘, 𝑥𝑗 , 𝑥𝑘 in
sum in the expression for 𝑞(𝑥) must be interpreted as integers equal to 0 or 1 (modulo 4). But since 𝑄 is a symmetric
matrix, it suffices to know the off-diagonal entries of 𝑄 modulo 2 if we assume 𝑄𝑗,𝑘 = 𝑄𝑘,𝑗 . Due to the condition
𝑞(0) = 1 we only consider matrices 𝑄 with 𝑄0,0 = 0. It is easy to check that we can encode any quadratic function
𝑞 : F𝑚

2 → T as a symmetric (𝑚 + 1) × (𝑚 + 1) bit matrix 𝑄 (with 𝑄0,0 = 0) uniquely as above.

Given 𝑒 and matrices 𝐴,𝑄 as above, we define 𝑓(𝑒,𝐴,𝑄) = 𝑓(𝑒, 𝑎, 𝑞), where 𝑎 and 𝑞 are as in the last equation.

We encode a number 𝑒 ∈ 𝑅8 ∖ {0} as an integer 𝑒′ such that 𝑒 = exp(𝑒′𝜋
√
−1/4) · 2⌊𝑒

′/16⌋/2, with ⌊𝑥⌋ the greatest
integer ≤ 𝑥. We encode the constant quadratic mapping 0 as a matrix 𝐴 with zero rows.
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Changing the representation of a quadratic mapping

The representation 𝑓(𝑒,𝐴,𝑄) of a quadratic mapping 𝑞 is not unique. In this section we define some elementary
operations 𝑇𝑖,𝑗 , 𝑋𝑖,𝑗 on a triple (𝑒, 𝑎,𝑄) that to not change the quadratic mapping 𝑓(𝑒,𝐴,𝑄). In the next section we
will use these operations to reduce the representation 𝑓(𝑒,𝐴,𝑄) to a standard form.

Let (𝑏1, . . . , 𝑏𝑚) be the standard basis ofF𝑚
2 . For 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 𝑖 ̸= 𝑗, define the linear transformation 𝑇𝑖,𝑗 : F𝑚

2 → F𝑚
2

by:

𝑇𝑖,𝑗(𝑏𝑗) = 𝑏𝑗 + 𝑏𝑖 , 𝑇𝑖,𝑗(𝑏𝑘) = 𝑏𝑘 for 𝑘 ̸= 𝑗 .

We also define the (affine) translation 𝑇0,𝑗 : F𝑚
2 → F𝑚

2 by 𝑇0,𝑗(𝑥) = 𝑥 + 𝑏𝑗 for all 𝑥 ∈ F𝑚
2 .

Let 𝑞′ be the quadratic function 𝑞 ∘ 𝑇𝑖,𝑗 given by 𝑥 ↦→ 𝑞(𝑇𝑖,𝑗(𝑥)). Let 𝑄′ be the symmetric bit matrix representing 𝑞′.
Then for 𝑖, 𝑗 > 0, 𝑖 ̸= 𝑗 we have

𝑄′
𝑖,0 = 𝑄′

0,𝑖 = 𝑄𝑖,0 + 𝑄𝑗,0 + 𝑄𝑖,𝑗 + 𝑄𝑖,𝑖 ·𝑄𝑗,𝑗 ,
𝑄′

𝑖,𝑖 = 𝑄′
𝑖,𝑖 + 𝑄𝑗,𝑗 ,

𝑄′
𝑖,𝑘 = 𝑄′

𝑘,𝑖 = 𝑄𝑖,𝑘 + 𝑄𝑗,𝑘 for 𝑘 > 0, 𝑘 ̸= 𝑖 ,

𝑄′
𝑘,𝑙 = 𝑄𝑘,𝑙 for all other pairs (𝑘, 𝑙) .

The quadratic function 𝑞 ∘𝑇0,𝑗 , 𝑗 > 0 is equal to 𝑒 · 𝑞′ with 𝑒 = exp(𝜋
√
−1 · (𝑄0,𝑖 +𝑄𝑖,𝑖/2)). Here 𝑞′ is the quadratic

function represented by the bit matrix 𝑄′ with

𝑄′
0,0 = 0 ,

𝑄′
0,𝑘 = 𝑄′

𝑘,0 = 𝑄0,𝑘 + 𝑄𝑗,𝑘 for 𝑘 > 0 ,

𝑄′
𝑘,𝑙 = 𝑄𝑘,𝑙 for all other pairs (𝑘, 𝑙) .

For an affine mapping 𝑎 : F𝑚
2 → F𝑛

2 the mapping 𝑎′ = 𝑎 ∘ 𝑇𝑖,𝑗 with 𝑖 ≥ 0, 𝑗 > 0, 𝑗 ̸= 𝑖 is represented by the matrix
𝐴′ given by:

𝐴′(𝑖, 𝑙) = 𝐴(𝑖, 𝑙) + 𝐴(𝑗, 𝑙) ,
𝐴′(𝑘, 𝑙) = 𝐴(𝑘, 𝑙) for 𝑘 ̸= 𝑗 .

This means that adding row and column 𝑗 > 0 to row and and column 𝑖 ≥ 0 of a matrix 𝑄 representing a quadratic
function changes that matrix to a matrix 𝑄′ representing 𝑄 ∘ 𝑇𝑖,𝑗 , up to a scalar factor (which is a fourth root of unity)
and some corrections required for the entries 𝑄′

0,𝑗 , 𝑄
′
𝑗,0 and 𝑄′

0,0 of 𝑄′. Similarly, adding row 𝑗 to row 𝑖 of a matrix 𝐴
representing an affine mapping from F𝑚

2 to F𝑛
2 changes matrix 𝐴 to a matrix representing the affine mapping 𝐴 ∘ 𝑇𝑖,𝑗 .

We obviously have 𝑓(𝑒,𝐴,𝑄) = 𝑓(𝑒,𝐴 ∘ 𝑇𝑖,𝑗 , 𝑄 ∘ 𝑇𝑖,𝑗). So we may perform a row operation on matrix 𝐴, and also a
row and a column operation on matrix Q without changing f(e, A, Q), (up to a few corrections in line and column 0 of
𝑄).

If 𝑓(𝑒,𝐴,𝑄) is in echelon form, (as defined in the following section), then it remains in echelon form after applying an
operation 𝑇𝑖,𝑗 , 𝑖 < 𝑗.

For 𝑖, 𝑗 > 0 let 𝑋𝑖,𝑗 be the operation on the triple (𝑒,𝐴,𝑄) that exchanges rows 𝑖 with row 𝑗 of 𝐴 and 𝑄, and also
column 𝑖 with column 𝑗 of 𝑄. The operation 𝑋𝑖,𝑗 does not change 𝑓(𝑒,𝐴,𝑄).

Reducing the representation of a quadratic mapping

We call a representation (𝑒,𝐴,𝑄) of a quadratic mapping reduced if the following conditions hold:

• 𝐴 has no nonzero rows.

• Let 𝐴1 be the matrix obtained from 𝐴 by prepending the column vector (1, 0, . . . , 0)⊤. Then the leading coeffi-
cient of a row of 𝐴1 is always strictly to the right of the leading coefficient of the row above it.

• Each column containing a leading coefficient of a row has zeros in all its other entries.
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Here the leading coefficient of a row of matrix 𝐴 is the first nonzero entry in that row. We call the representation
(𝑒,𝐴,𝑄) echelonized if only the first two of the three conditions above are satisfied.

Obviously, a reduced or echelonized representation (𝑒,𝐴,𝑄) also injective. It is easy to see that any quadratic mapping
has a unique reduced representation.

In this section we present an algorithm for converting a representation of a quadratic function to a reduced representa-
tion. Function qstate12_reduce in module qstate12.c implements this algorithm.

A matrix is in row echelon form if

• All rows consisting of only zeros are at the bottom.

• The leading coefficient of a nonzero row is always strictly to the right of the leading coefficient of the row above
it.

A matrix 𝐴 is in reduced row echelon form if it is in echelon form, and each column containing a leading coefficient
of a row has zeros in all its other entries. See e.g. https://en.wikipedia.org/wiki/Row_echelon_form .

Let 𝑇𝑖,𝑗 , 𝑋𝑖,𝑗 be as in the last section. In order to reduce a representation (𝑒,𝐴,𝑄) of a quadratic mapping 𝑓(𝑒,𝐴,𝑄)
we apply several operations 𝑇𝑖,𝑗 , 𝑋𝑖,𝑗 on the components 𝑒,𝐴,𝑄. Neither of these two operations changes 𝑓(𝑒,𝐴,𝑄).

Given 𝐴, let 𝐴1 = 𝐴1(𝐴) be obtained from 𝐴 as above. By applying a sequence of operations 𝑇𝑖,𝑗 , 𝑋𝑖,𝑗 we may
convert 𝐴1 to reduced echelon form. If 𝐴1 is in reduced echelon form and contains no zero rows at the bottom then
the representation (𝑒,𝐴,𝑄) is reduced. Otherwise we use the following algorithm repeatedly to remove the zero rows
from the bottom of 𝐴.

Let 𝑖 be the index of the last row of 𝐴 and assume 𝐴𝑖,𝑗 = 0 for all 𝑗.

Let 𝑖′ be the highest index with 𝑄𝑖,𝑖′ = 1. If such an 𝑖′ exists then we add row 𝑖′ of 𝐴 to all rows 𝑘 where 𝑄𝑘,𝑖 = 1
holds and we adjust 𝑄. Afterwards we have 𝑄𝑖′,𝑖 = 1 for at most one index 𝑖′.

Case 1: 𝑄𝑖′,𝑖 = 0 for all 𝑖′

The we may delete the last row of 𝐴 , adjust 𝑄, and double 𝑒 without changing 𝑓(𝑒,𝐴,𝑄).

Case 2: 𝑄0,𝑖 = 1

Then 𝑓(𝑒,𝐴,𝑄) is the constant function 0.

Case 3. 𝑄𝑖′,𝑖 = 1, 0 < 𝑖′ < 𝑖

Then we add row 𝑖 of 𝐴 to all rows 𝑘 /∈ {𝑖, 𝑖′} where 𝑄𝑘,𝑖′ = 1 holds and we adjust 𝑄. Afterwards we have 𝑄𝑘,𝑖′ =
𝑄𝑖′,𝑘 = 𝑄𝑘,𝑖 = 𝑄𝑖,𝑘 = 0 for all 𝑘 /∈ {𝑖, 𝑖′}, 𝑄𝑖,𝑖 = 0 , and 𝑄𝑖,𝑖′ = 𝑄𝑖′,𝑖 = 1. So we may delete rows 𝑖 and 𝑖′ of 𝐴,
adjust 𝑄, and double 𝑒 without changing 𝑓(𝑒,𝐴,𝑄).

Case 4: 𝑄𝑖,𝑖 = 1

Then 𝑓(𝑒,𝐴,𝑄) is not changed if we delete the last row 𝑖 of 𝐴, adjust 𝑄, and multiply 𝑒 by 1 +
√
−1.

Remark

The algorithm sketched in this subsection yields an alternative proof of Lemma 2.
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Extending a quadratic mapping

Let 𝑔 : F𝑛
2 → C be a quadratic mapping with 𝑔 = 𝑓(𝑒,𝐴,𝑄), where 𝐴 is an (𝑚+1)×𝑛 and 𝑄 is an (𝑚+1)×(𝑚+1)

bit matrix. Define 𝑔(𝑗) : F𝑛+1
2 → C by

𝑔(𝑗)(𝑥𝑛, . . . , 𝑥𝑗 , 𝑥𝑗−1, . . . , 𝑥0) = 𝑔(𝑥𝑛, . . . , 𝑥𝑗+1, 𝑥𝑗−1, . . . , 𝑥0) .

So 𝑔(𝑗) does not depend on bit 𝑗 of 𝑥.

Then we have 𝑔(𝑗) = 𝑓(𝑒,𝐴′, 𝑄′) for matrices 𝐴′, 𝑄′ defined as follows. 𝐴′ is obtained from 𝐴′ by first appending a
zero row at the bottom, and then inserting a zero column to the right of bit position 𝑗. Finally, we change the entry at
the bottom of the inserted column from 0 to 1. 𝑄′ is obtained from 𝑄′ by appending a zero row at the bottom and a
zero column at the right. Then we have

𝑓(𝑒,𝐴′, 𝑄′)(𝑥𝑛, . . . , 𝑥𝑗 , 𝑥𝑗−1, . . . , 𝑥0) = 𝑓(𝑒,𝐴,𝑄)(𝑥𝑛, . . . , 𝑥𝑗+1, 𝑥𝑗−1, . . . , 𝑥0) ,

as required. Function qstate12_extend in module qstate12.c implements the extension of a quadratic mapping.

Products and tensor products of quadratic mappings

Let 𝑔(𝜆), 𝜆 = 1, 2, be arbitrary complex-valued functions on F𝑛𝜆
2 . Let 𝑉𝜆 be the complex vector space (C2)⊗𝑛𝜆 of

dimension 2𝑛𝜆 . Then 𝑔(𝜆) has a natural interpretation as a vector in 𝑉𝜆. Here the basis vectors of 𝑉𝜆 are labelled by the
elements of F𝑛𝜆

2 . Any function ℎ : F𝑛1+𝑛2
2 → C can be considered as tensor in the space 𝑉1⊗𝑉2. Then the coordinate

of that tensor with respect to the basis vector labeled by 𝑏1 ⊗ 𝑏2 , 𝑏𝜆 ∈ F𝑛𝜆
2 , is equal to ℎ(𝑏1, 𝑏2).

For 𝜆 = 1, 2 let 𝑔(𝜆) : F𝑛𝜆
2 → C be as above. For 𝑐 ≤ 𝑗 ≤ min(𝑛1, 𝑛2) we define a mapping (𝑔(1) ⊙ 𝑔(2))𝑗,𝑐 :

F𝑛1+𝑛2−𝑗−𝑐
2 → C by (︁

𝑔(1) ⊙ 𝑔(2)
)︁
𝑗,𝑐

(𝑥′, 𝑥1, 𝑥2) =
∑︁
𝑥∈F𝑐

2

𝑔(1)(𝑥, 𝑥′, 𝑥1) · 𝑔(2)(𝑥, 𝑥′, 𝑥2) ,

where 𝑥′ ∈ F𝑗−𝑐
2 , 𝑥𝜆 ∈ F𝑛𝜆−𝑗

2 . We abbreviate (𝑔(1) ⊙ 𝑔(2))𝑗,0 to (𝑔(1) ⊙ 𝑔(2))0.

If 𝑔(1) and 𝑔(2) are quadratic mappings then (𝑔(1) ⊙ 𝑔(2))𝑛 is a quadratic mapping by Lemma 1. Considering the
corresponding quadratic state vectors we see that (𝑔(1) ⊙ 𝑔(2))0 is just the tensor product 𝑔(1) ⊗ 𝑔(2) of 𝑔(1) and 𝑔(2).

The functions 𝑔(𝜆), 𝜆 = 1, 2 defined above may also be considered as tensors in the spaces 𝑉0⊗𝑉𝜆 with 𝑉0 = (C2)⊗𝑗 ,
𝑉𝜆 = (C2)⊗𝑛𝜆−𝑗 . Then 𝑔(1) ⊗ 𝑔(2) ∈ 𝑉0 ⊗𝑉1 ⊗𝑉0 ⊗𝑉2. We assume that 𝑉0 is equal to it dual space via the standard
Euclidean scalar product. Then we obtain the contraction of 𝑔(1) ⊗ 𝑔(2) over the two copies of 𝑉0 as (𝑔(1) ⊗ 𝑔(2))𝑗,𝑗 .
The result has to be interpreted as a tensor in the space 𝑉1 ⊗ 𝑉2.

The tensors 𝑔(𝜆) in the space 𝑉0⊗𝑉 𝜆 given above can also be considered as 2𝑗 ×2𝑘𝜆 matrices 𝑀𝜆, with 𝑘𝜆 = 𝑛𝜆− 𝑗.
Then the contraction (𝑔(1) ⊗ 𝑔(2))𝑗,𝑗 given above corresponds to the matrix product 𝑀⊤

1 · 𝑀2, which is a 𝑘1 × 𝑘2
matrix.

In the next two sections we present an algorithm for computing (𝑔(1) ⊙ 𝑔(2))𝑗,𝑐 for quadratic mappings 𝑔(1), 𝑔(2). This
yields an algorithm for tensor contraction and also for matrix multiplication of quadratic state matrices. Note that the
transposition of a quadratic state matrix 𝑀 is a rather simple operation that can be achieved by exchanging columns in
the 𝐴 part of a representation (𝑒,𝐴,𝑄) of 𝑀 . The functions qstate12_product and qstate12_matmul in module
qmatrix12.c implement the operation (.⊙ .)𝑗,𝑐 and the matrix multiplication.

The operator (. ⊙ .)𝑗,𝑐 can be implemented in python with the numpy package. Let c1 and c2 be one-dimensional
complex numpy arrays of length 2𝑛1 and 2𝑛2 corresponding to the vectors 𝑔(1) and 𝑔(2), respectively. Then a numpy
array c3 corresponding to the vector (𝑔(1) ⊗ 𝑔(2))𝑗,𝑐 can be computed as follows:
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import numpy as np
c1a = c1.reshape((2**c, 2**(j-c), -1))
c2a = c2.reshape((2**c, 2**(j-c), -1))
c3 = np.einsum("cjk,cjl->jkl", c1a, c2a)
c3 = c3.reshape((-1,))

Without going into details, we remark that in the graphical ZX-calculus (which is used for describing linear maps
between qubits) is an appropriate setup for ‘explaining’ the operation (.⊙ .)𝑗,𝑐, see e.g. https://en.wikipedia.org/wiki/
ZX-calculus .

An algorithm for multiplying quadratic mappings

In this section we present an effective algorithm for computing the product 𝑔(1) · 𝑔(2) of two quadratic mappings
𝑔(1), 𝑔(2) : F𝑛

2 → C. Such an algorithm is a key ingredient for implementing the operator (. ⊙ .)𝑗,𝑐. For 𝜆 = 1, 2 let
(𝑒(𝜆), 𝐴(𝜆), 𝑄(𝜆)) be a reduced representation of 𝑔(𝜆).

We will show that for any 𝑗 ≤ 𝑛 there are quadratic mappings 𝑔(𝜆,𝑗) = 𝑓
(︀
𝑒(𝜆,𝑗), 𝐴(𝜆,𝑗), 𝑄(𝜆,𝑗)

)︀
with 𝑔(1,𝑗) · 𝑔(2,𝑗) =

𝑔(1) · 𝑔(2), where the first 𝑗 columns of 𝐴(1,𝑗) and 𝐴(2,𝑗) are equal, and both, 𝐴(1,𝑗) and 𝐴(2,𝑗), are in reduced echelon
form. We put (𝑒(𝜆,0), 𝐴(𝜆,0), 𝑄(𝜆,0)) = (𝑒(𝜆), 𝐴(𝜆), 𝑄(𝜆)).

Assume that 𝑒(𝜆,𝑗−1), 𝐴(𝜆,𝑗−1), 𝑄(𝜆,𝑗−1) satisfy the conditions given above. Then we can compute(︀
𝑒(𝜆,𝑗), 𝐴(𝜆,𝑗), 𝑄(𝜆,𝑗)

)︀
from

(︀
𝑒(𝜆,𝑗−1), 𝐴(𝜆,𝑗−1), 𝑄(𝜆,𝑗−1)

)︀
as follows:

Case 1: Both, 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1), have a row with leading coefficient in column 𝑗.

Since 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1) are in reduced echelon form and the first 𝑗− 1 columns of these two matrices
are equal, we conclude that the first 𝑗 columns of 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1) are equal.

So we may put
(︀
𝑒(𝜆,𝑗), 𝐴(𝜆,𝑗), 𝑄(𝜆,𝑗)

)︀
=

(︀
𝑒(𝜆,𝑗−1), 𝐴(𝜆,𝑗−1), 𝑄(𝜆,𝑗−1)

)︀
for 𝜆 = 1, 2.

Case 2: Only 𝐴(1,𝑗−1) has a row with leading coefficient in column 𝑗.

Assume that this row of 𝐴(1,𝑗−1) has index 𝑖. We add row 𝑖 to all rows 𝑘 of 𝐴(1,𝑗−1) where 𝐴
(1,𝑗−1)
𝑘,𝑗 ̸=

𝐴
(2,𝑗−1)
𝑘,𝑗 . Therefore we apply the operation 𝑇𝑖,𝑘 defined in section Changing the representation of a

quadratic mapping. So we obtain a representation 𝑓
(︀
𝑒(1,𝑗−1)′ , 𝐴(1,𝑗−1)′ , 𝑄(1,𝑗−1)′

)︀
of 𝑔(1,𝑗−1), where

the first 𝑗 columns of 𝐴(1,𝑗−1)′ and 𝐴(2,𝑗−1) are equal, except for the coefficient in row 𝑖, column 𝑗.

We obtain 𝐴(1,𝑗) from 𝐴(1,𝑗−1)′ by deleting row 𝑖 of 𝐴(1,𝑗−1)′ , and 𝑄(1,𝑗) from 𝑄(1,𝑗−1)′ by deleting row
and column 𝑖. We put 𝑒(1,𝑗) = 𝑒(1,𝑗−1)′ . We put

(︀
𝑒(2,𝑗), 𝐴(2,𝑗), 𝑄(2,𝑗)

)︀
=
(︀
𝑒(2,𝑗−1), 𝐴(2,𝑗−1), 𝑄(2,𝑗−1)

)︀
.

By construction, matrix 𝐴(1,𝑗) is in reduced echelon from and the first 𝑗 columns of 𝐴(1,𝑗) and 𝐴(2,𝑗) are
equal.

It remains to show that deleting row 𝑖 of matrix 𝐴(1,𝑗−1)′ does not change 𝑔(1) · 𝑔(2).

Let 𝐷(𝜆) be the submatrix of 𝐴(𝜆,𝑗−1)′ that consists of the first 𝑗 columns of 𝐴(1,𝑗−1)′ . For computing
𝑔(1) · 𝑔(2) we only have to consider rows of matrix 𝐷(1) that are linear combinations of rows of matrix
𝐷(2), excluding row 0 of both matrices. By construction, 𝐷(1) and 𝐷(2) are in reduced echelon form, row
𝑖 of 𝐷(1) has its leading coefficient in column 𝑗, and in 𝐷(2) there is no row with leading coefficient in
column 𝑗. Thus row 𝑖 of 𝐷(1) is not a linear combination of the rows of 𝐷(2), ignoring row 0 of 𝐷(2).

Case 3: Only 𝐴(2,𝑗−1) has a row with leading coefficient in column 𝑗.

This case is symmetric to case 2, exchanging the role of 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1).

Case 4: Neither 𝐴(1,𝑗−1) nor 𝐴(2,𝑗−1) has a row with leading coefficient in column 𝑗.

Case 4.1: Columns 𝑗 of 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1) are equal.
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Then we may proceed as in case 1.

Case 4.2: Column 𝑗 of 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1) are equal except in row 0.

Assume that 𝑥(1) is in the support of 𝑔(1,𝑗−1), 𝑥(2) is in the support of 𝑔(2,𝑗−1), and that the leftmost 𝑗− 1
bits of 𝑥(1) and 𝑥(2) are equal. Then from the properties of 𝐴(1,𝑗−1) and 𝐴(2,𝑗−1) we conclude that 𝑥(1)

and 𝑥(2) must differ in the bit at position 𝑗. Thus 𝑔(1,𝑗−1) · 𝑔(2,𝑗−1) is the constant function 0, and we may
put 𝑒(1,𝑗) = 𝑒(2,𝑗) = 0.

Case 4.3: There is an 𝑖 > 0 with 𝐴
(1,𝑗−1)
𝑖,𝑗 ̸= 𝐴

(2,𝑗−1)
𝑖,𝑗 .

Let 𝑖 be the highest row index such that 𝐴(1,𝑗−1)
𝑖,𝑗 ̸= 𝐴

(2,𝑗−1)
𝑖,𝑗 holds.

For 𝜆 = 1, 2 we add row 𝑖 to all rows 𝑘 of 𝐴(𝜆,𝑗−1) where 𝐴
(1,𝑗−1)
𝑘,𝑗 ̸= 𝐴

(2,𝑗−1)
𝑘,𝑗 by applying operations

𝑇𝑖,𝑘.

So we obtain a representation 𝑓
(︀
𝑒(1,𝑗−1)′ , 𝐴(1,𝑗−1)′ , 𝑄(1,𝑗−1)′

)︀
of 𝑔(1,𝑗−1), where the first 𝑗 columns of

𝐴(1,𝑗−1)′ and 𝐴(2,𝑗−1) are equal, except for the coefficient in row 𝑖, column 𝑗.

For 𝑗 = 1, 2 we obtain 𝐴(𝜆,𝑗) from 𝐴(𝜆,𝑗−1)′ by deleting row 𝑖 of 𝐴(𝜆,𝑗−1)′ . We obtain 𝑄(𝜆,𝑗) from
𝑄(𝜆,𝑗−1)′ by deleting row and column 𝑖. We put 𝑒(𝜆,𝑗) = 𝑒(𝜆,𝑗−1)′ .

A similar argument as in case 2 shows that matrices 𝐴(1,𝑗) and 𝐴(2,𝑗) are as required and that deleting row
𝑖 from 𝐴(1,𝑗−1′) and 𝐴(2,𝑗−1′) does not change 𝑔(1) · 𝑔(2).

Now we may compute the product of 𝑔(1) and 𝑔(2) as follows:

𝑔(1) · 𝑔(2) = 𝑔(1,𝑛) · 𝑔(2,𝑛) = 𝑓
(︀
𝑒(1,𝑛) · 𝑒(2,𝑛), 𝐴(1,𝑛), 𝑄(1,𝑛) ⊙𝑄(2,𝑛)

)︀
.

If the symmetric (𝑚+1)× (𝑚+1) bit matrices 𝑄(𝜆), 𝜆 = 1, 2, represent the quadratic functions 𝑞(𝜆) : F𝑚
2 → T, then

we define 𝑄(1) ⊙𝑄(2) as the symmetric (𝑚 + 1) × (𝑚 + 1) bit matrix representing the quadratic function 𝑞(1) · 𝑞(2).
The entries 𝑄(1⊙2)

𝑖,𝑗 of 𝑄(1) ⊙𝑄(2) can be computed as follows:

𝑄
(1⊙2)
𝑖,𝑗 = 𝑄

(1)
𝑖,𝑗 + 𝑄

(2)
𝑖,𝑗 for 𝑖, 𝑗 > 0 ,

𝑄
(1⊙2)
𝑖,0 = 𝑄

(1⊙2)
0,𝑖 = 𝑄

(1)
0,𝑖 + 𝑄

(2)
0,𝑖 + 𝑄

(1)
𝑖,𝑖 ·𝑄(2)

𝑖,𝑖 for 𝑖 > 0 ,

𝑄
(1⊙2)
0,0 = 0 ,

The corrections in row and column 0 of 𝑄(1⊙2) are necessary, since the diagonal entries of 𝑄(1)‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑄(2)

are to be interpreted modulo 4.

So our algorithm allows us to multiply quadratic mappings effectively.

Remark

In certain cases we have to compute
(︀
𝑒(𝜆,𝑗), 𝐴(𝜆,𝑗), 𝑄(𝜆,𝑗)

)︀
from

(︀
𝑒(𝜆,𝑗−1), 𝐴(𝜆,𝑗−1), 𝑄(𝜆,𝑗−1)

)︀
; and we have the ad-

ditional information that e.g. the factor 𝑔1 of the product 𝑔1 · 𝑔2 is a quadratic mapping that does not depend on qubit 𝑖.
Then the part 𝐴(1,𝑗−1) of the representation of 𝑔(1,𝑗−1) always has a row 𝑖 such that 𝐴(1,𝑗−1)

𝑖,𝑗 is the only nonzero entry
in row 𝑖 and in column 𝑗 of 𝐴(1,𝑗−1). Furthermore, row 𝑖 and column 𝑗 of 𝑄(1,𝑗−1) are zero in that case. Thus only
cases 1 and 2 can occur in the above computation, and adding row 𝑖 of 𝐴(1,𝑗−1) to any other row in that matrix affects
column 𝑗 of 𝐴(1,𝑗−1) only, and does not affect 𝑄(1,𝑗−1). In our implementation we make use of this simplification
wherever appropriate.
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Computing tensor and matrix products

In this section we explain how to compute the operator (.⊙, )𝑗,𝑐. For 𝜆 = 1, 2 let 𝑔(𝜆) : F𝑛𝜆
2 be quadratic mappings and

0 ≤ 𝑐 ≤ 𝑗 ≤ min(𝑛1, 𝑛2). We first show how to compute a representation of (𝑔(1) ⊙ 𝑔(2))𝑗 from the representations
of 𝑔(1) and 𝑔(2).

For actually computing (𝑔(1) ⊙ 𝑔(2))𝑗 we may extend the mapping 𝑔(1) : F𝑗
2 × F𝑛1−𝑗

2 → C to a mapping 𝑔(1
′) :

F𝑗
2 × F𝑛1−𝑗

2 × F𝑛2−𝑗
2 → C, with 𝑔(1

′) not depending on the last factor F𝑛2−𝑗
2 , as described in one of the last sections.

Similarly, we may extend 𝑔(2) to a mapping 𝑔(2
′) : F𝑗

2 × F𝑛1−𝑗
2 × F𝑛2−𝑗

2 → C, with 𝑔(2
′) not depending on the factor

F𝑛2−𝑗
2 in the middle. Then we simply have (𝑔(1) ⊙ 𝑔(2))𝑗 = 𝑔(1

′) · 𝑔(2′).

Using the techniques discussed in section Extending a quadratic mapping and in the last section we can compute a
representation of (𝑔(1) ⊙ 𝑔(2))𝑗 from representations of 𝑔(1) and 𝑔(2).

It remains to compute (𝑔(1) ⊙ 𝑔(2))𝑗,𝑐 from (𝑔(1) ⊙ 𝑔(2))𝑗 . We have(︀
𝑔(1) ⊙ 𝑔(2)

)︀
𝑗,𝑐

(𝑥) =
∑︁
𝑦∈F𝑐

2

(︀
𝑔(1) ⊙ 𝑔(2)

)︀
𝑗
(𝑦, 𝑥) for 𝑥 ∈ F𝑛1+𝑛2−𝑗−𝑐

2 .

Let ℎ : F𝑛
2 → C be a quadratic mapping with representation (𝑒,𝐴,𝑄), and define ℎ𝑐 : F𝑛−𝑐

2 → C by 𝑥 ↦→∑︀
𝑦∈F𝑐

2
ℎ(𝑦, 𝑥). Then ℎ𝑐 is a quadratic mapping with representation (𝑒,𝐴𝑐, 𝑄), where 𝐴𝑐 is obtained from 𝐴 by

deleting the leftmost 𝑐 columns of 𝐴.

So we may easily compute (𝑔(1) ⊙ 𝑔(2))𝑗,𝑐 from (𝑔(1) ⊙ 𝑔(2))𝑗 .

Restricting a quadratic mapping

For any function 𝑔 : F𝑛
2 → C define 𝑔(𝑗) : F𝑛

2 → C by

𝑔(𝑗)(𝑥𝑛−1, . . . , 𝑥𝑗 , . . . , 𝑥0) =

{︂
𝑔(𝑥𝑛−1, . . . , 𝑥𝑗 , . . . , 𝑥0) if 𝑥𝑗 = 0
0 if x𝑗 = 1

Then 𝑔(𝑗) = 𝑔 · �̂�(𝑗), where �̂�(𝑗) : F𝑛
2 → C is a projection function given by (𝑥𝑛−1, . . . , 𝑥𝑗 , . . . , 𝑥0) ↦→ 1 − 𝑥𝑗 . It

is easy to find a representation of the quadratic mapping �̂�(𝑗) so that we can compute a representation of 𝑔(𝑗) from a
representation of a quadratic mapping 𝑔. This computation is implemented in function qstate12_restrict_zero
in module qstate12.c.

Function 𝑔(𝑗) corresponds to a certain kind of a restriction of the function 𝑔. Let 𝑔 be a quadratic mapping and (𝑒,𝐴,𝑄)
be a representation of 𝑔(𝑗). Let 𝑉 = F𝑛−1−𝑗

2 × {0} × F𝑗
2. Let 𝑔 |𝑉 be the restriction of 𝑔 to 𝑉 . Then (𝑒,𝐴𝑗 , 𝑄) is a

representation of the restriction 𝑔 |𝑉 , where 𝐴𝑗 is the matrix obtained from matrix 𝐴 by deleting column 𝑗. Function
qstate12_restrict in module qstate12.c computes a representation of 𝑔 |𝑉 from a representation of 𝑔.

The restriction of a quadratic mapping discussed in this section can be used for describing a measurement of a stabilizer
state on a quantum computer, see e.g. [AG04].

Quadratic state matrices

A quadratic state matrix 𝑆 of shape (𝑛0, 𝑛1) is an element of the tensor product 𝑉0 ⊗ 𝑉1 with the basis vectors of
𝑉𝑘 being indexed by F𝑛𝑘

2 , 𝑘 = 0, 1, such that the coordinate function of 𝑆 is a quadratic mapping. That coordinate
function is a function F𝑛0

2 × F𝑛1
2 → C.

Thus 𝑆 corresponds to a complex 2𝑛0 ×2𝑛1 matrix. We may implement 𝑆 as a quadratic state vector of 𝑛0 +𝑛1 qubits,
augmented by an information about its shape (𝑛0, 𝑛1) . We let the 𝑛0 qubits with high indices correspond to the rows
of 𝑆; and we let the 𝑛1 qubits with low indices correspond to the columns of 𝑆.

In python we implement a quadratic state matrix as a instance of class QStateMatrix in module mmgroup.
structures.qs_matrix. A matrix of shape (0, 𝑛) corresponds to a row vector of dimension 2𝑛 and a matrix of
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shape (𝑛, 0) corresponds to a column vector of dimension 2𝑛. We have seen above that the unitary quadratic state
matrices of shape (𝑛, 𝑛) form the Clifford group 𝒳𝑛. We have also discussed fast algorithms for multiplication and
inversion of such matrices. So class QStateMatrix supports fast computation in Clifford group 𝒳𝑛 for 𝑛 ≤ 12, which
is sufficient for computing in the subgroup 21+24.Co1 of the monster group.

On the C level, a quadratic state matrix is implemented as a structure of type qstate12_type as defined in file
clifford12.h. E.g. function qstate12_matmul in file qmatrix12.c multiplies two such quadratic state matri-
ces.

For practical calculations with quadratic state matrices it is vital to keep the following correspondences in mind.

Let 𝑆 be a 2𝑛0 × 2𝑛1 quadratic state matrix. We put 𝑛 = 𝑛0 + 𝑛1. We implement Let 𝑆 as a quadratic state vector
𝑉 = 𝑓(𝑒,𝐴,𝑄), where𝐴 is a𝑚×𝑛 bit matrix and𝑄 is a symmetric𝑚×𝑚 bit matrix𝑄. So entry𝑆[𝑖0, 𝑖1] corresponds
to entry 𝑖0 · 2𝑛1 + 𝑖1 of that quadratic state vector 𝑉 for 0 ≤ 𝑖0 < 2𝑛0 and 0 ≤ 𝑖1 < 2𝑛1 . Also, entry 𝑖 of the quadratic
state vector 𝑉 corresponds to a row vector of 𝑛 bits containing the binary representation of 𝑖.

We concatenate matrices 𝐴 and 𝑄 to a 𝑚× (𝑛 + 𝑚) bit matrix 𝑀 with 𝑀 [𝑖, 𝑗] = 𝐴[𝑖, 𝑗] and 𝑀 [𝑖, 𝑗 + 𝑛] = 𝑄[𝑖, 𝑗].
In C and in python we implement the bit matrix as an array of unsigned 64-bit integers, so that bit 𝑀 [𝑖, 𝑗] corresponds
to bit 𝑗 (of valence 2𝑗) of entry 𝑖 of that array.

Displaying quadratic state vectors and matrices

We use the bra-ket formalism to display quadratic state vectors. We display a column unit vector as a ket. E.g. |1011>
means the column unit vector labelled by the bit vector (1, 0, 1, 1) in (C2)⊗4. This corresponds to a state where the
qubits with indices 3, 2, 1, 0 have values 1, 0, 1, 1 , respectively. Similarly, we display a row vector as a bra. So e.g.
<110| means the row unit vector labelled by (1, 1, 0). A 24 × 23 matrix with an entry one in the row labelled by
(1, 0, 1, 1) and the column labelled by (1, 1, 0), and zeros elsewhere, is displayed as |1011><110|.

We also want to display certain linear combinations of such unit vectors or matrices. As we have seen earlier, the
coordinate function of such a state vector in (C2)⊗𝑛 is a function F𝑛

2 → C. We only consider state vectors where
the support of the coordinate function is an affine subspace of F𝑛

2 , and where the nonzero coordinates are in the set
{±1,±

√
−1}, up to a global scalar factor. Furthermore, the nonzero coordinates must be given by a certain quadratic

form 𝑄 that we will specify below.

The support of the coordinate function is an affine subspace 𝑎0 + 𝑉 , where 𝑎0 ∈ F𝑛
2 and 𝑉 is a linear subspace of F𝑛

2

with a basis, say, (𝑎1, . . . 𝑎𝑚). In order to specify the support of the coordinate function, we write 𝑎0 in bra-ket notation
as above, and we write coordinates 𝑎1, . . . , 𝑎𝑚 underneath the coordinate 𝑎0 without any bras or kets. We may give
the basis (𝑎1, . . . , 𝑎𝑚) in echelon form, omitting leading zeros. We write 𝐴 for the with row vectors (𝑎0, . . . , 𝑎𝑚)⊤.

We write a lower triangular matrix 𝑄 with diagonal entries '.' or 'j' and off-diagonal entries entries '+' or '-' to
the left of the coordinate matrix 𝐴. Here an entry '-' means −1, 'j' means

√
−1, and anything else means 1. We

write 𝑞𝑖,𝑗 for the entries of the matrix matrix 𝑄. Then we put:

𝑓(𝐴,𝑄) =
∑︁

𝑥=(𝑥0,...,𝑥𝑚)∈{0,1}𝑚+1,𝑥0=1

𝑄(𝑥) · |⊕𝑚
𝑘=0𝑥𝑘 · 𝑎𝑘⟩ , 𝑄(𝑥) =

𝑚∏︁
𝑖,𝑗=0

𝑞
𝑥𝑖·𝑥𝑗

𝑖,𝑗 .

We use the same notation if the values 𝑎𝑖 are kets or matrices written in the form |ket><bra|. For example:

. |10><01|
-. 1 10
-+j 1

means 1 · |10⟩ ⟨01| − 1 · |11⟩ ⟨11| −
√
−1 · |10⟩ ⟨00| +

√
−1 · |11⟩ ⟨10|.

E.g. the coefficient in the third term of that sum is computed as:

𝑄(1, 0, 1) = (1, 0, 1)

⎛⎝ .
− .
− + 𝑗

⎞⎠⎛⎝ 1
0
1

⎞⎠ = (−1) ·
√
−1 = −

√
−1 .
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It turns out that up to a scalar factor all elements of the complex Clifford group 𝒳𝑛 and all stabilizer states can be
displayed in that way. So we can display any element of 𝒳𝑛 and any stabilizer state of 2𝑛 qubits on one page for 𝑛 up
to about 25.

Reducing a quadratic state matrix

We define a special reduced matrix representation (𝑒,𝐴,𝑄) of a quadratic state matrix 𝑆 of shape (𝑛0, 𝑛1) that dif-
fers slightly from the reduced representation of a quadratic state vector. That representation satisfies the following
conditions:

1. We require that the representation (𝑒,𝐴,𝑄) is echelonized (but not necessarily reduced), as described in section
Reducing the representation of a quadratic mapping.

2. Let 𝐴′ be the bit matrix obtained from 𝐴 by removing the leftmost 𝑛0 columns from 𝐴. We require that a
permutation of the rows of matrix 𝐴′, excluding row 0, is in (not necessarily reduced) echelon form.

Note that the first 𝑛0 columns of the bit matrix 𝐴 correspond to the 2𝑛0 rows of the complex matrix 𝑆; and that
the remaining 𝑛1 columns of 𝐴 correspond to the 2𝑛1 columns of 𝑆.

3. Let 𝐾0 be the set of the rows of the bit matrix 𝐴 such that all bits in the leftmost 𝑛0 columns of that row are zero.
Let 𝐾1 be the set of the rows of 𝐴 such that all bits in rightmost 𝑛1 columns of that row are zero. We exclude
row 0 from 𝐾0 and from 𝐾1.

If the bit matrix 𝐴 has 𝑚′ rows then the bit matrix 𝑄 is a symmetric 𝑚′×𝑚′ bit matrix. Let 𝑄′ be the submatrix
of 𝑄 that consists of all rows with index in 𝐾1 and of all columns with index in 𝐾0 .

We require that submatrix 𝑄′ of 𝑄 has at most one nonzero entry in each row and in each column.

Note that 𝐾0 ∩𝐾1 = ∅, since the representation (𝑒,𝐴,𝑄) is echelonized.

We may obtain a reduced matrix representation (𝑒,𝐴,𝑄) of a quadratic state matrix 𝑆 of shape (𝑛0, 𝑛1) as follows:

• Starting from a reduced representation (𝑒0, 𝐴0, 𝑄0) of a quadratic state vector 𝑆 we may obtain a representation
(𝑒1, 𝐴1, 𝑄1) of the matrix 𝑆 satisfying condition (2.) by applying a sequence of transformations 𝑇𝑖,𝑗 , 𝑖 < 𝑗.
Then 𝐴1 is also in echelon form. 𝑇𝑖,𝑗 is defined in section Implementation of quadratic mappings.

• We apply a sequence of transformations 𝑇𝑖,𝑗 , 𝑖 < 𝑗, with 𝑖, 𝑗 ∈ 𝐾0 or 𝑖, 𝑗 ∈ 𝐾1 to (𝑒1, 𝐴1, 𝑄1). These
transformations preserve the echelon form of𝐴1 and also property (2.). Since𝐾0∩𝐾1 = ∅, these transformations
act as row and column operations on the submatrix 𝑄′ of 𝑄. So we may achieve property (3.) by a sequence of
such transformations, thus obtaining a suitable representation (𝑒,𝐴,𝑄) of 𝑆.

Using a reduced matrix representation (𝑒,𝐴,𝑄) of a quadratic state matrix 𝑆 has a variety of advantages.

• We can easily compute the rank of 𝑆 as follows:

For (𝑒,𝐴,𝑄) let 𝐾0,𝐾1, 𝑄
′ be defined as above. Let 𝐾2 be the subset 𝐾1 containing all rows of 𝐴 such that the

corresponding row of bit matrix 𝑄′ is zero. Then the binary logarithm of the rank of 𝑆 is equal to the number of
rows of matrix 𝐴 with are neither in 𝐾0 nor in 𝐾2. Here we have to exclude row 0 of 𝐴.

We omit the proof of this fact since we do not need it for our purposes.

• That representation can be used for decomposing 𝑆 into a product 𝑀1 ·𝐻 ·𝑀2 of quadratic state matrices, where
𝑀1,𝑀2 are monomial and 𝐻 is a Hadamard-like matrix. By a Hadamard-like matrix we mean a tensor product
of 2 × 2 unit matrices and matrices

(︀
1 1
1 −1

)︀
.

If 𝑆 has shape (𝑛, 𝑛) then such a decomposition reduces the complexity of multiplying 𝑆 with an arbitrary
complex vector form 𝑂(4𝑛) to 𝑂(𝑛 · 2𝑛).

Essentially, we have used such a decomposition for multiplying the non-monomial part of generator 𝜉 of the
monster M with a vector of our representation of M. Since this special case is discussed elsewhere, we do not
go into details here.
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• In the next section we will introduce the Pauli group 𝒫𝑛, which is an important normal subgroup of 𝒳𝑛. Using
the reduced matrix representation of an element 𝑆 of 𝒳𝑛 we can conjugate any element of 𝒫𝑛 with 𝑆 in 𝑂(𝑛2)
bit operations.

With quadratic state matrices, a general matrix multiplication in the Clifford group𝒳𝑛 costs𝑂(𝑛3) bit operations.

Function qstate12_reduce_matrix in file qmatrix12.c converts any representation of a quadratic state matrix to a
reduced matrix representation. For the sake of efficiency, we relax condition 3 on matrix 𝑄′ as follows. A permutation
of the rows of 𝑄′ is in echelon form when the columns of 𝑄′ are reversed.

The Pauli group

The Pauli group 𝒫𝑛 of 𝑛 qubits is the normal subgroup of the Clifford group 𝒳𝑛 generated by the not gates, the phase
𝜋 gates in 𝒳𝑛, and by the scalar multiples of the unit matrix by a fourth root of unity. It has structure 1

2 (21+2𝑛
+ × 𝑍4),

exponent 4 and order 22𝑛+2.

We represent an element of 𝒫𝑛 as a product of 2𝑛 + 2 generators. Each generator may have exponent 0 or 1. The
sequence of these exponents are stored as a bit vector as follows:

• Bit 2𝑛 + 1 corresponds to multiplication with the scalar
√
−1.

• Bit 2𝑛 corresponds to multiplication with the scalar −1.

• Bit 𝑛 + 𝑖 with 0 ≤ 𝑖 < 𝑛 corresponds to a not gate applied to qubit 𝑖.

• Bit 𝑖 with 0 ≤ 𝑖 < 𝑛 corresponds to a phase 𝜋 gate applied to qubit 𝑖.

Factors are ordered by bit positions, with the most significant bit position occurring first. In the C language we represent
bit vectors a integers as usual.

All generators commute and have order 2 except for the following cases:

• A phase 𝜋 gate anticommutes with a not gate applied to the same qubit, i.e their commutator is the scalar −1.

• Of course, the scalar
√
−1 squares to the scalar −1.

Functions qstate12_pauli_vector_mul and qstate12_pauli_vector_exp in module qs_matrix.c perform
multiplication and exponentiation in the Pauli group 𝒫𝑛.

Given an element 𝑝 of the Pauli group and a reduced matrix representation (𝑒,𝐴,𝑄) of a unitary quadratic state matrix
𝑆, we can quickly compute the conjugate 𝑆 · 𝑝 · 𝑆−1 as follows:

• Right multiply 𝑆 with 𝑝 by applying the appropriate gates to 𝑆. This affects row 0 of the bit matrix 𝐴 and row
and column 0 of the symmetric bit matrix 𝑄 only.

• Restore the original values 𝐴[0, 𝑗] for all 𝑗 < 𝑛 and the original values 𝑄[0, 𝑘] = 𝑄[𝑘, 0] for all 𝑘 > 𝑛 by
applying appropriate transformations 𝑇0,𝑗 to the modified representation (𝑒,𝐴,𝑄). This does not change the
value 𝑆 · 𝑝 of the complex matrix computed in the previous step. 𝑇0,𝑗 is defined in section Implementation of
quadratic mappings.

• We may restore the the remaining original values of row and column 0 of 𝑄 by applying phase 𝜋 gates to 𝑆.
These gate operations correspond to a left multiplication with a element 𝑝1 of the Pauli group.

• We may restore the the remaining original values of row 0 of 𝐴 by applying not gates to 𝑆. These gate operations
correspond to a left multiplication with a element 𝑝2 of the Pauli group.

• Up to a known scalar factor we have obtained an equation 𝑆 = 𝑝2 · 𝑝1 ·𝑆 · 𝑝, with 𝑝1, 𝑝2 in the Pauli group. With
this equation the requested conjugation is an easy computation in the Pauli group.

Function qstate12_pauli_conjugate in module qs_matrix.c performs this conjugation.

This operation can be simplified considerably if we require the product 𝑆 · 𝑝 · 𝑆−1 up to a scalar factor only. Then the
mapping 𝑝 ↦→ 𝑆 · 𝑝 · 𝑆−1 is a symplectic linear transformation on the vector space 𝒫𝑛/𝑍(𝒫𝑛) of dimension 2𝑛 over
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F2. Here 𝑍(𝒫𝑛) is the centre of 𝒫𝑛. Function qstate12_to_symplectic in module qs_matrix.c computes this
transformation as a 2𝑛× 2𝑛 bit matrix acting on F2𝑛

2 by right multiplication.

This means that the homomorphism of the Clifford group 𝒞𝑛 group of structure 1
2 (21+2𝑛

+ × 𝑍8).Sp2𝑛(2) onto the
symplectic group Sp2𝑛(2) can be computed very fast.

Using these ideas and a suitable representation of the subgroup 𝐺𝑥0 of the monster, we can also compute the homo-
morphism from the group 𝐺𝑥0 of structure 21+2𝑛

+ .Co1 onto its factor group Co1 very fast. Here the image in Co1 will
be given as a linear operation on the Leech lattice modulo 2.

Applying a gate to a quadratic mapping

In the theory of quantum computing we may apply so-called gates to a quadratic state vector in (C2)⊗𝑛. For our
purposes a gate is a linear operation on (C2)⊗𝑛 = (C2)⊗𝑘 ⊗ (C2)⊗𝑛−𝑘 which may be written as a tensor product of
a unitary 2𝑘 × 2𝑘 matrix G and a 2𝑛−𝑘 × 2𝑛−𝑘 identity matrix for a small number 1 ≤ 𝑘 ≤ 2. Here we may permute
the factors C2 of (C2)⊗𝑛 arbitrarily before the decomposition into a tensor product as above.

We state without proofs how to apply a certain gates to a quadratic mapping. The gates listed below generate the
Clifford group. Here a quadratic mapping represents a quadratic state vector as before. A quadratic state matrix of
shape (𝑛0, 𝑛1) is considered as a quadratic mapping F𝑛0

2 × F𝑛1
2 → C.

The not gate

A not gate operating in qubit 𝑗 maps a state 𝑔 to a state 𝑔′ with 𝑔′(𝑥) = 𝑔(𝑥 + 𝑒𝑗), where 𝑒𝑗 =
(0, . . . , 0, 1, 0, . . . , 0) and the component 1 is at position j. A not gate operating in qubit 𝑗 is implemented
for 𝑔 = 𝑓(𝑒,𝐴,𝑄) by flipping the bit 𝐴0,𝑗 . The C function state12_gate_not implements a not gate.

The controlled not gate

A controlled not gate is a gate that negates a target qubit 𝑗 ̸= 𝑗′ controlled by a qubit 𝑗′. Such a gate maps
a state 𝑔 to a state 𝑔′ with 𝑔′(𝑥) = 𝑔(𝑥+ ⟨𝑒𝑗′ , 𝑥⟩ · 𝑒𝑗), where ⟨., .⟩ is the scalar product of bit vectors. Such
a gate is implemented for 𝑔 = 𝑓(𝑒,𝐴,𝑄) by adding column 𝑗′ of 𝐴 to column 𝑗 of 𝐴. The C function
state12_gate_ctrl_not implements a controlled not gate.

The phase 𝜑 gate

Applying a phase 𝜑 gate to qubit 𝑗 of a state 𝑔 = 𝑓(𝑒,𝐴,𝑄) changes the state 𝑔 to a state 𝑔′ with

𝑔′(𝑥𝑛−1, . . . , 𝑥𝑗 , . . . , 𝑥0) = exp(𝜑𝑥𝑗

√
−1) · 𝑔(𝑥𝑛−1, . . . , 𝑥𝑗 , . . . , 𝑥0) .

We consider only phases 𝜑 which are multiples of 𝜋/2. For an (𝑚 + 1) × 𝑛 matrix 𝐴 let 𝐴𝑗 be the 𝑗-th
column of matrix 𝐴. Let 𝐴−1 be the column vector (1, 0, . . . , 0)⊤ with 𝑚 + 1 entries. Then a phase 𝜋
gate on qubit 𝑗 maps 𝑓(𝑒,𝐴,𝑄) to

𝑓
(︀
(−1)𝐴0,𝑗 · 𝑒,𝐴,𝑄⊙𝐴−1𝐴

⊤
𝑗 ⊙𝐴𝑗𝐴

⊤
−1

)︀
.

A phase 𝜋/2 gate on qubit 𝑗 maps 𝑓(𝑒,𝐴,𝑄) to

𝑓
(︁√

−1
𝐴0,𝑗 · 𝑒,𝐴,𝑄⊙𝐴𝑗𝐴

⊤
𝑗

)︁
.

Here we consider 𝐴𝑗 , 𝐴−1 as a (𝑚 + 1) × 1 matrices, so that the matrix product 𝐴𝑗𝐴
⊤
−1 is an (𝑚 + 1) ×

(𝑚 + 1) matrix. Operator ⊙ is as in section Multiplication of quadratic mappings.

The C function qstate12_gate_phi implements phase gate.

The controlled phase 𝜋 gate
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Applying a controlled phase 𝜋 gate to qubits 𝑗 and 𝑗′ of a state 𝑔 = 𝑓(𝑒,𝐴,𝑄) changes the state 𝑔 to a
state 𝑔′ with

𝑔′(. . . , 𝑥𝑗 , . . . , 𝑥𝑗′ , . . .) = (−1)𝑥𝑗𝑥𝑗′ · 𝑔(. . . , 𝑥𝑗 , . . . , 𝑥𝑗′ , . . .) .

A controlled phase 𝜋 gate on qubit 𝑗 and 𝑗′ maps 𝑓(𝑒,𝐴,𝑄) to

𝑓
(︀
(−1)𝐴0,𝑗 ·𝐴0,𝑗′ · 𝑒,𝐴,𝑄⊙𝐴𝑗𝐴

⊤
𝑗′ ⊙𝐴𝑗′𝐴

⊤
𝑗

)︀
.

The C function qstate12_gate_ctrl_phi implements controlled phase gate.

The Hadamard gate

A Hadamard gate at qubit 𝑗 is a a mapping that changes a quadratic mapping 𝑔 to another quadratic mapping
1/
√

2 · 𝑔′ with

𝑔′(. . . , 𝑥𝑗+1, 𝑥𝑗 , 𝑥𝑗+1, . . .) =

𝑔(. . . , 𝑥𝑗+1, 0, 𝑥𝑗−1, . . .) + (−1)𝑥𝑗 · 𝑔(. . . , 𝑥𝑗+1, 1, 𝑥𝑗−1, . . .) .

We implement the application of a Hadamard gate on qubit 𝑗 to a quadratic mapping 𝑔 represented as
(𝑒,𝐴,𝑄) as follows.

We append a zero row at 𝐴 and also a zero row and a zero column at 𝑄. Let 𝑖 be the index of the appended
row and column. Then we change 𝑄𝑖,𝑘 and 𝑄𝑘,𝑖 to 𝐴𝑘,𝑗 , 𝐴𝑘,𝑗 to 0 for all 𝑘 ̸= 𝑖, and 𝐴𝑖,𝑗 to 1. Let 𝐴′, 𝑄′

be the modified matrices 𝐴′, 𝑄′. Then we have 𝑔′ = 𝑓(𝑒,𝐴′, 𝑄′).

The C function state12_gate_h implements a Hadamard gate.

Correctness of the implementation of the Hadamard gate

The correctness of that implementation can be seen as follows. W.l.o.g we assume that 𝑗 is the last index
0. Let 𝑥 = (𝑥𝑛−1, . . . , 𝑥0) ∈ F𝑛

2 , 𝑦 = (𝑦0, . . . , 𝑦𝑚) ∈ F𝑚+1
2 with 𝑦0 = 1, and assume 𝑦 · 𝐴 = 𝑥 for the

matrix product 𝑦 ·𝐴. Then

(𝑦, 𝑏) ·𝐴′ = (𝑥𝑛−1, . . . , 𝑥1, 𝑏) for 𝑏 ∈ F2 .

Let 𝑞, 𝑞′ be the quadratic mappings given by 𝑄,𝑄′. Then

𝑞′(𝑦, 𝑏) = (−1)𝑏·⟨𝑦,𝐴0⟩ · 𝑞(𝑦) = (−1)𝑏·𝑥0 · 𝑞(𝑦) ,

where 𝐴0 is the last column of 𝐴. Thus

𝑓(𝑒,𝐴′, 𝑄′)(𝑥𝑛−1, . . . , 𝑥0) = 𝑔(𝑥𝑛−1, . . . , 𝑥1, 0) + (−1)𝑥0 · 𝑔(𝑥𝑛−1, . . . , 𝑥1, 1) .

Computing the trace of a quadratic state matrix

We briefly explain the computation of the trace of a quadratic state matrix 𝑆 of shape (𝑛, 𝑛). Such a matrix
is considered as a mapping F𝑛

2 × F𝑛
2 → C. So there are 𝑛 qubits corresponding to the rows and 𝑛 qubits

corresponding the columns of the matrix.

For 𝑖 = 0, . . . , 𝑛− 1 we apply a control not gate to the 𝑖-th row qubit, controlled by the 𝑖-th column qubit.
This moves the diagonal entries of the matrix 𝑆 to row 0.

Using the techniques described above we may restrict the modified matrix to row 0, and sum up all entries
of that row. This leads to a scalar that has the value of the trace of 𝑆.
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1.6.3 Class QStateMatrix modelling a quadratic state matrix

class mmgroup.structures.qs_matrix.QStateMatrix(*args: Any, **kwargs: Any)
This class models a quadratic state matrix

Quadratic state matrices are described in the API reference in section Computation in the Clifford group.

Parameters

• rows (int or and instance of class QStateMatrix) –

– Binary logarithm of the number of rows of the matrix

– or an instance of class QStateMatrix. Then a deep copy of that instance is created.

• cols (A nonnegative int, if parameter rows is an int) – Binary logarithm of the number
of columns of the matrix

• data – The data of the matrix as described below

• mode – Evaluated according as described below

Raise

• TypeError if type(data) is not as expected.

• ValueError if data cannot be converted to an instance of class QStateMatrix.

In terms of the theory of quantum computing, rows, cols = 0, n creates a column vector or a -ket |v> cor-
responding to a state of of n qubits, and rows, cols = n, 0 creates a row vector or a -bra <v| corresponding
to a linear function on a state of n qubits.

If rows == cols == n and the created 2**n times 2**n matrix is invertible, then the matrix is (a scalar mul-
tiple of) an element of the complex Clifford 𝒳12 of n qubits described in [NRS01].

If rows is an instance of this class then a copy of that instance is created.

If rows and cols are integers then data may be:

• None (default). Then the zero matrix is created.

• A list of integers. Then that list of integers must encode a valid pair (A, Q) of bit matrices that make up a
state, as described in Long-term stable storage of vectors of the representation, subsection Quadratic state
matrices. In this case parameter mode is evaluated as follows:

– 1: create matrix Q from lower triangular part

– 2: create matrix Q from upper triangular part

– Anything else: matrix Q must be symmetric.

• An integer v. Then one of the values rows and colsmust be zero and the unit (row or column) vector with
index v is created. Here a row vector is an 1 times 2**cols and a column vector is a 2**rows times 1
matrix.

As in numpy, matrix multiplication of quadratic state matrices is done with the @ operator and elementwise
multiplication of such matrices is done with the * operator. A quadratic state matrix may also be multiplied by
a scalar. Here the scalar must be zero or of the form:

2𝑒/2 · 𝑤 , 𝑒 ∈ Z, 𝑤 ∈ C, 𝑤8 = 1 .

Divison by such a scalar is legal.

A matrix of type QStateMatrix may be indexed with square brackets as in numpy in order to obtain entries,
rows, columns or submatrices. Then a complex numpy array (or a complex number) is returned as in numpy. It
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is not possible to change the matrix via item assignment. So the easiest way to obtain a complex version of an
instance qs of type QStateMatrix is to write qs[:,:].

A row or column index has a natural interpretation as a bit vector. In the theory of quantum computation a bit of
such a bit vector corresponds to a qubit. Let qs be a quadratic state matrix of shape (m, n) and

𝑥 =

𝑚−1∑︁
𝑘=0

2𝑘𝑥𝑘, 𝑦 =

𝑛−1∑︁
𝑘=0

2𝑘𝑦𝑘, 𝑥𝑘, 𝑦𝑘 ∈ {0, 1}.

Then qs[x,y] is the entry of matrix qs with row index corresponding to the bit vector (𝑥𝑚−1, . . . , 𝑥0) and
column index corresponding to the bit vector (𝑦𝑛−1, . . . , 𝑦0).

Officially, we support matrices with rows, cols <= 12 only. Methods of this class might work for slightly
larger matrices. Any attempt to constuct a too large matrix raises ValueError.

property H

Return conjugate transposed matrix as in numpy

property T

Return transposed matrix as in numpy

conjugate()

Compute complex conjugate of the matrix

Returns
instance of class QStateMatrix.

copy()

Return a deep copy of the matrix

extend(j, nqb, copy=True)
Insert nqb qubits at position j. .

Let qs be the state of shape (n0+n1), and let n = n0 + n1`. We change ``qs to the following state
qs' depending on n + nqb qubits:

qs'(x[n-1],...,x[j],y[nqb-1],...,y[0],x[j-1]...,x[0]) = qs(x[n-1],...,x[j],
x[j-1]...,x[0]) .

The function returns ket, i.e. a column vector of shape (n + nqb, 0).

If the input is reduced then the result is also reduced.

If parameter copy is True (default) then a copy of the matrix is modified and returned.

extend_zero(j, nqb, copy=True)
Insert nqb zero qubits at position j.

Let qs be the state of shape (n0+n1), and let n = n0 + n1`. We change ``qs to the following state
qs' depending on n + nqb qubits:

qs'(x[n-1],...,x[j],y[nqb-1],...,y[0],x[j-1]...,x[0]) is equal to qs(x[n-1],...,x[j],
x[j-1]...,x[0]) if y[0] = ... = y[nqb-1] = 0 and equal to zero otherwise.

The function returns ket, i.e. a column vector of shape (n + nqb, 0).

If the input is reduced then the result is also reduced.

If parameter copy is True (default) then a copy of the matrix is modified and returned.
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gate_ctrl_not(vc, v)
Apply controlled not gates to a state

Change the state qs to a state qs' with qs'(x) = qs(x (+) <vc,x> * v) where '(+)' is the bitwise
xor operation, and <.,.> is the scalar product of bit vectors. The result is not reduced. The scalar product
of the bit vectors j and jc must be zero. Otherwise the ctrl not operation is not unitary.

Computing qs.gate_ctrl_not(1 << jc, 1 << j), for jc != j, corresponds to applying a controlled
not gate to qubit j contolled by qubit jc. This operation is unitary if and only if the scalar product of j and
jc is zero.

gate_ctrl_phi(v1, v2)
Apply controlled phase gates to a state

Change the state qs to a state qs' with qs'(x) = qs(x) * (-1)**(<v1,x>*<v2,x>), where <.,.>
is the scalar product of bit vectors and '**' denotes exponentiation. The result is reduced if the input is
reduced. Computing qs.gate_ctrl_phi(1 << j1, 1 << j2) corresponds to applying a phase pi gate
to qubit j2 controlled by qubit j1.

gate_h(v)
Apply Hadamard gates to a state

Apply a Hadamard gate to all qubits j of the state qs (referred by self) with v & (1 << j) == 1. Aply-
ing a Hadamard gate to gate j changes a state qs to a state 1/sqrt(2) * qs', where qs'(..,x[j+1],
x_j,x[j-1],..) = qs(..,x[j+1],0,x[j-1],..) + (-1)**(x_j) * qs(..,x[j+1],1,x[j-1],.
.) . The result is not reduced.

gate_not(v)
Apply not gates to a state

Change the state qs to a state qs'with qs'(x) = qs(x (+) v), where '(+)' is the bitwise xor operation.
The result is reduced if the input is reduced. Computing qs.gate_not(1 << j) corresponds to negating
qubit j.

gate_phi(v, phi)
Apply phase gate to a state

Change the state qs to a state qs' with qs'(x) = qs(x) * sqrt(-1)**(phi * <v,x>), where <.,.>
is the scalar product of bit vectors and '**' denotes exponentiation. The result is reduced if the input is
reduced. Computing qs.gate_phi(1 << j, phi) corresponds to applying a phase (phi * pi/2) gate
to qubit j.

inv()

Return inverse matrix

Returns an instance of class QStateMatrix. Raise ValueError if matrix is not invertible.

lb_norm2()

Return binary logarithm of squared operator norm.

The operator norm is the largest absolute singular value of the matrix. For a quadratic state matrix this is a
power of

√
2 or zero.

The function returns -1 if the matrix is zero.

lb_rank()

Return binary logarithm of the rank of the matrix

The rank of a nonzero quadratic state matrix is a power of two. The function returns -1 if the matrix is zero.
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order(max_order)
Try to find the order of a matrix

If the matrix m has order e for e <= max_order, i.e. m.power(e) is the unit matrix, then e is returned.
Otherwise ValueError is raised.

The function might also succeed if e is slighty larger than max_order. It has run time O(max_order**0.
5).

pauli_conjugate(v, arg=True)
Conjugate Pauli group elements by the matrix

The method conjugates an element of the Pauli group or a list of such elements with the quadratic matrix and
returns the congugated Pauli group element (or the list of conjugated elements). All Pauli group elements
are encoded as in method pauli_vector.

If 𝑀 ‘𝑖𝑠𝑡ℎ𝑒𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐𝑠𝑡𝑎𝑡𝑒𝑚𝑎𝑡𝑟𝑖𝑥𝑔𝑖𝑣𝑒𝑛𝑏𝑦𝑡ℎ𝑖𝑠𝑜𝑏𝑗𝑒𝑐𝑡𝑡ℎ𝑒𝑛𝑡ℎ𝑒𝑃𝑎𝑢𝑙𝑖𝑔𝑟𝑜𝑢𝑝𝑒𝑙𝑒𝑚𝑒𝑛𝑡 : 𝑚𝑎𝑡ℎ : ‘𝑣 is
mapped to 𝑀𝑣𝑀−1.

Matrix 𝑀 must be in a Clifford group. The function raises ValueError if this is not the case.

In case arg = False the (complex) arguments of the returned Pauli group elements are not computed.

pauli_vector()

Return matrix as a Pauli vector if it is in the Pauli group

We represent an element of the Pauli group 𝒫𝑛 as a product of 2𝑛+ 2 generators. Each generator may have
exponent 0 or 1. The sequence of these exponents are stored as a bit vector as follows:

• Bit 2𝑛 + 1 corresponds to multiplication with the scalar
√
−1.

• Bit 2𝑛 corresponds to multiplication with the scalar −1.

• Bit 𝑛 + 𝑖 with 0 ≤ 𝑖 < 𝑛 corresponds to a not gate applied to qubit 𝑖.

• Bit 𝑖 with 0 ≤ 𝑖 < 𝑛 corresponds to a phase 𝜋 gate applied to qubit 𝑖.

Factors are ordered by bit positions, with the most significant bit position occuring first.

The function returns the bit vector corresponding to this object as an integer. It raises ValueError if the
matrix iy not in the Pauli group.

power(e)
Return the e-th power of the matrix

For a matrix m the power with exponent e = 2 is m @ m, and the power with e = -1 is the inverse matrix
of m.

reshape(new_shape, copy=True)
Reshape matrix to given shape

Parameters

• new_shape (tuple of two integers) – This shape of the reshaped matrix. It must be
a pair of integers. A pair (n0, n1) correponds to a complex 2**n0 times 2**n1 matrix.

• copy (bool) – A deep copy of the reshaped matrix is returned if copy is True (default).
Otherwise the matrix is reshaped in place.

new_shape[0] + new_shape[1] = self.shape[0] + self.shape[0] must hold.

If one of the values new_shape[0], new_shape[1] is -1 then the other value is calculated from the sum
self.shape[0] + self.shape[1].
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restrict(j, nqb, copy=True)
This is method restrict_zero with deletion.

Let qs be the state of shape (n0+n1), and let n = n0 + n1`. We change ``qs to the following state
qs' depending on n - nqv qubits:

qs'(x[n'-1],...,x[0]) is equal to qs(x[n'-1],...,x[j],0,...,0,x[-1],...,x[0]).

The function returns ket, i.e. a column vector of shape (n - nqb, 0).

If the input is reduced then the result is also reduced.

If parameter copy is True (default) then a copy of the matrix is modified and returned.

restrict_zero(j, nqb, copy=True)
Restrict nqb qubits starting at postion j to 0.

Let qs be the state of shape (n0+n1), and let n = n0 + n1`. We change ``qs to the following state
qs' depending on n qubits:

qs'(x[n-1],...,x[0]) is equal to qs(x[n-1],...,x[0]) if x[j] = ... = x[j+nqb-1] =
0 and equal to zero otherwise. We do not change the shape of qs.

The output is reduced if the input is reduced.

If parameter copy is True (default) then a copy of the matrix is modified and returned.

rot_bits(rot, nrot, start=0)
Rotate qubit indices of the state matrix qs in place

If the state matrix qs has shape (0,n) or (n,0) we rotate the qubits of qs in place as follows:

For n0 <= i < n0 + nrot we map qubit i to qubit n0 + (i + rot) % nrot. E.g. nrot = 3, rot
= 1, n0 = 0 means qubits are mapped as 0->1, 1->2, 2->0.

Here the entries of the state matrix are labelled by bit vectors of length n. Let qs(x[0],...,x[n-1]) be
the entry of the state matrix corresponding to the bit vector (x[n-1],...,x[0]).

Then the function changes qs to qs' with qs'(...,x[start+nrot],y[nrot-1],...,y[0],
x[start-1],...) = qs(...,x[start+nrot],z[nrot-1],...,z[0],x[start-1],...), where
z[j] = y[j - rot (mod 3)].

If the state matrix qs has shape (n0, n1) then we label the entries of state matrix by bit vectors of length n0
+ n1, with the n1 highest bits corresponding to the rows of the matrix, and the n0 lowest bits corresponding
to the columns of the matrix.

property shape

Get shape of the complex matrix represented by the state

The function returns a pair (rows, cols) meaning that the state corresponds to a complex 2**nrows
times 2**ncols matrix.

show(reduced=True)
Return a state as a string.

If reduced is True (default) then the reduced representation of the state is displayed. Otherwise the state
is displayed ‘as is’.

The standard conversion of a state to a string, i.e. method __str__(), is equivalent to method show().
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sumup(j, nqb, copy=True)
Sum up nqb qubits starting at position j.

Let qs be the state of shape (n0+n1), and let n = n0 + n1. We change qs to the following state qs'
depending on n - nqb qubits:

qs'(x[n-1],...,x[j+nqb],x[j-1],...,x[0]) = sum_{x[j+nqb-1],...,x[j]}
qs1(x[nn1-1],...,x[0]) .

The function returns ket, i.e. a column vector of shape (n - nqb, 0).

If the input is reduced then the result is also reduced.

If parameter copy is True (default) then a copy of the matrix is modified and returned.

to_symplectic()

Convert a quadratic state matrix to a symplectic bit matrix

Here the quadratic state matrix 𝑄 given by self must be an invertible 2𝑘 × 2𝑘 quadratic state matrix, i.e.
𝑄 must be of shape (k,k). So 𝑄 is in the Clifford group 𝒞𝑘 of k qubits, up to a scalar factor.

The function computes a 2𝑘 × 2𝑘 bit matrix 𝐴 with the following property.

If 𝑣 is a bit vector representing an element 𝑔𝑣 of the Pauli group of k qubits then 𝑣 · 𝐴 is the vector
representing the element 𝑄 · 𝑔𝑣 ·𝑄−1 of that Pauli group, up to a scalar factor. Here elements of the Pauli
group are given as integers representing bit vectors in the same way as in method pauli_vector, ignoring
the bits 2k, 2k+1 corresponding to the scalar factor.

So this method computes the natural homomorphism from the Clifford group 𝒞𝑘 to the symplectic group
S2𝑘(2).

The function returns 𝐴 as a numpy array of shape (2*n), with the entries of that array corresponding to
the rows of 𝐴.

trace()

Return the trace of a square matrix.

The trace is returned as an integer, a floating point number, or a complex number.

xch_bits(sh, mask)
Exchange qubit arguments the state qs in place

We label the entries of the state matrix qs by bit vectors and define qs(x[n-1],...,x[0]), with n = n0
+ n1, (n0, n1) = qs.shape as in method rot_bits.

We exchange qubit j with argument qubit j + sh of the state, if bit j of mask is set. If bit j of mask is
set then bit j + sh of mask must not be set. No mask bit at position >= n - sh may be set.

E.g. qs.qstate12_xch_bits(1, 0x11) changes the state matrix qs to a state matrix qs' with qs'(..
.,x6,x5,x4,x3,x2,x1,x0.) = qs(...,x6,x4,x5,x3,x2,x0,x1).

mmgroup.structures.qs_matrix.qs_unit_matrix(nqb)
Return unit matrix as an instance of class QStateMatrix

The returned unit matrix has shape (nqb, nqb). So it represents a 2**nqb times 2**nqb unit matrix.
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1.6.4 Computation in the Subgroup G_x0 of the monster

According to Conway’s construction of the monster M in [Con85], the subgroup 𝐺𝑥0 of structure 21+24
+ .Co1 has a

faithful rational representation on the tensor product 4096𝑥 ⊗ 24𝑥. Here 24𝑥 is the representation of the group Co1 as
the automorphism group of the real Leech lattice, and 4096𝑥 is the representation of a group𝐺(4096𝑥) as a subgroup of
the real Clifford group 𝒞12, where the representation of 𝒞12 is as in section Class QStateMatrix modelling a quadratic
state matrix. Note that 𝐺(4096𝑥) is also of structure 21+24

+ .Co1.

We remark that the subgroup 𝐺𝑥0 of the monster has five classes of involutions that map to 2B involutions in the
monster, see [Wil13]. From Table 2 in [Nor98] we conclude that 𝐺𝑥0 has two classes of involutions that map to 2A
involutions in the monster. According to [Con85], the restriction of the 196883-dimensional representation of the
monster to 𝐺𝑥0 leads to a representation of 𝐺𝑥0 of shape

299𝑥 ⊕ 98280𝑥 ⊕ 24𝑥 ⊗ 4096𝑥 .

We can compute the characters of all these representations of 𝐺𝑥0, e.g. with the C function xsp2co1_traces_fast
in file xsp2co1_traces.c, or with function xsp2co1_traces_all in file xsp2co1_elem.c. The calculations in
the python module mmgroup.tests.test_involutions.make_involution_samples show that the class of an
involution in the group 𝐺𝑥0 can be identified by computing the four characters given above.

We use the ideas in section Class QStateMatrix modelling a quadratic state matrix for implementing the representation
4096𝑥. In principle, the representation 24𝑥 is straightforward. The part 4096𝑥 of a representation of an element 𝑔
of 𝐺𝑥0 determines 𝑔 up to sign. So 𝑔 is uniquely determined if we store the image under 𝑔 of a single vector in the
representation 24𝑥. The space 24𝑥 is equivalent to the Leech lattice Λ, and we store the image of a fixed shortest vector
𝛽 in Λ/3Λ, which is the Leech lattice modulo 3, as follows.

Let 𝜑 be the natural homomorphism from the subgroup 𝑄𝑥0 of 𝐺𝑥0 of structure 21+24 onto Λ/2Λ, which is the Leech
lattice modulo 2.

Let 𝑔 ∈ 𝐺𝑥0 be represented as a pair (𝑔1, 𝑔2) ∈ 𝐺(4096𝑥) × Co1. Then 𝑔2 can be reconstructed from the image 𝛽 · 𝑔2
of a single shortest vector 𝛽 in the Leech lattice (modulo 3).

The operation of 𝑔2 on a shortest vector 𝛽′ ∈ Λ is given by

𝛽′ ↦→ 𝜑(𝑔−1 · 𝜑−1(𝛽′ + 2Λ) · 𝑔) ∈ Λ/2Λ,

up to sign. Here a short vector in Λ/2Λ has precisely two opposite shortest preimages in Λ, and we may take an arbitrary
preimage in 𝑄𝑥0 when applying the inverse 𝜑−1 of 𝜑.

We compute the image 𝛽′ · 𝑔2 of an arbitrary shortest vector 𝛽′ ∈ Λ as follows. Assume first that 𝛽, 𝛽′ are shortest
vectors in Λ which are not perpendicular to each other, and assume that the shortest Leech lattice vector 𝛽 ·𝑔2 is known
for some 𝑔2 ∈ Co1. If 𝛽′ · 𝑔2 is known up to sign only, we can compute the sign of 𝛽′ from the scalar products (𝛽, 𝛽′),
and (𝛽 ·𝑔2, 𝛽′ ·𝑔2), which must be equal. Since |(𝛽, 𝛽′)| ∈ {1, 2, 4}, it suffices to compute the scalar products modulo 3.
For perpendicular shortest vectors 𝛽, 𝛽′ we can easily find a shortest vector 𝛽′′ ∈ Λ with (𝛽, 𝛽′′) ̸= 0 and (𝛽′′, 𝛽′) ̸= 0.
So we may compute first 𝛽′′ · 𝑔2 and then 𝛽′ · 𝑔2 from these scalar products.

These ideas lead to a very fast implementation of the subgroup 𝐺𝑥0 of the monster M. Details of that implementation
are given in the C interface of the mmgroup project in section Computing in the subgroup G_{x0} of the Monster.

Class mmgroup.Xsp2_Co1 provides an implementation of the group 𝐺𝑥0 based on these ideas.
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1.6.5 Class Xsp2_Co1 modelling an element of the group 𝐺𝑥0

class mmgroup.structures.xsp2_co1.Xsp2_Co1(tag=None, atom=None, *args, **kwds)
Models an element the subgroup 𝐺𝑥0 of the monster

Here the subgroup 𝐺𝑥0 is a subgroup of the monster of structure 21+24.Co1. It is generated by the elements
𝑥𝛿, 𝑦𝑑, 𝑦𝑑, 𝑥𝜋, 𝜉 described in section The Monster group.

The constructor of this class works exactly as the constructor of class MM . Here all elements of the monster M
occuring in the constructor must lie in the subgroup 𝐺𝑥0 of the monster. So in the constructor all tags are legal,
except for the tag 't'. A instance of class MM is accepted in the constructor of this class and vice versa.

The group operation and the operation on a vector of class MMVector is the same as in class MM .

This class uses a considerably faster implementation of the group operation as in class MM , as described in section
Computation in the Subgroup G_x0 of the monster.

The user hardly ever has to deal with this class, since the implementation of class MM uses the accelerated functions
in this class automatically where appropriate.

chi_G_x0()

Compute characters of element

The function returns a tuple (𝜒𝑀 , 𝜒299, 𝜒24, 𝜒4096) of integers.

Here 𝜒𝑀 is the character of the element in the 196833-dimensional rep 198883𝑥 of the monster.

By Conway’s construction of the monster we have:

198883𝑥 = 299𝑥 ⊕ 24𝑥 ⊗ 4096𝑥 ⊕ 98280𝑥,

for suitable irreducible representations 299𝑥, 24𝑥, 4096𝑥, 98280𝑥 of the group 𝐺𝑥0. The corresponding
characters of the element of 𝐺𝑥0 are returned in the tuple given above.

While the product 𝜒24 · 𝜒4096 is well defined, the factors 𝜒24 and 𝜒4096 are defined up to sign only. We
normalize these factors such that the first nonzero value of the pair (𝜒24, 𝜒4096) is positive.

conjugate_involution(mmgroup=None)
Find an element conjugating an involution standard element

If the element 𝑔 given by self is an involution in the monster then the method computes an element ℎ of
the monster with ℎ−1𝑔ℎ = 𝑧, where 𝑧 is define as follows:

If 𝑔 = 1, we put ℎ = 𝑧 = 1

if 𝑔 is a 2A involution (in the monster) then we let 𝑧 be the involution in 𝑄𝑥0 corresponding to the Golay
cocode word with entries 2, 3 being set.

if 𝑔 is a 2B involution (in the monster) then we let 𝑧 be the central involution in 𝐺𝑥0

The function returns a pair (I, h), where ℎ as an element of the instance MM of class MMGroup. We put I
= 0 if 𝑔 = 1. We put I = 1, 2 if 𝑔 is a 2A or 2B involution, respectively.

The function raises ValueError if 𝑔 is not an involution.

This is a wrapper for the C function xsp2co1_elem_conjugate_involution.

Parameter mmgroup is not for public use. In special cases it may specify an alternative class implementing
the monster group. Then the function returns ℎ as an instance of that class.

conjugate_involution_G_x0(guide=0, group=None)
Map an involution in 𝐺𝑥0 to a standard form.

Assume that the element 𝑔 represented by self is an involution in the group 𝐺𝑥0.
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The function computes an element 𝑎 in 𝐺𝑥0 such that ℎ = 𝑎−1𝑔𝑎 is a (fixed) representative of the class
of 𝑔 in the group 𝐺𝑥0. The the function returns a pair (iclass, a), where a is the computed element of
𝐺𝑥0, and iclass describes the representative ℎ of the involution class as given in the following list:

iclass = '1A_x+': the neutral element 𝑥1

iclass = '2B_x-': the central involution 𝑥−1

iclass = '2A_x0': the element 𝑥{2,3}

iclass = '2B_x0': the element 𝑥Ω

iclass = '2A_o+': the element 𝑦𝑜
iclass = '2B_o-': the element 𝑥−1𝑦𝑜

iclass = '2B_o0': the element 𝑥{8,9}𝑦𝑜

iclass = '2B_d0': the element 𝑥{0,12}𝑦𝑑

Here in 𝑥{𝑖,𝑗} the index {𝑖, 𝑗} indicates a Golay cocode word of length 2 given by the entries 𝑖
and 𝑗. Octad 𝑜 is the standard octad {0, 1, 2, 3, 4, 5, 6, 7}. Dodecad 𝑑 is the standard dodecad
{0, 4, 8, 13, 14, 15, 17, 18, 19, 21, 22, 23}.

The first two characters of the string iclass denote the class in the Monster containing that class. The last
character of the string iclass denotes the sign of the character of the class in the representation 24𝑥 ⊗
4096𝑥.

By default, a is an instance of this class. If parameter group is set to a class representing a suitable subgroup
of the monster (e.g. group = mmgroup.MM) then a is returned as an instance of that class.

Parameter guide should usually be zero. If guide is a type-4 vector 𝑣4 in the Leech lattice mod 2 such
that the two conditions ℎ = 𝑎−1𝑔𝑎 and 𝑣4 · 𝑎 = Ω can both be achieved then we compute an element 𝑎
satisfying these two conditions. Otherwise parameter guide is ignored. Here Ω is the standard frame in
the Leech lattice.

order(max_order=119)
Return the order of the element of the monster group

If the argument max_order is present then the order of the element is checked up to (and including)
max_order only. Then the function returns 0 if the order is greater than max_order. By default, the
function returns the exact order of the element.

property subtype

Return subtype of an element

Let 𝑔 ∈ 𝐺𝑥0 be stored in self. The function returns the subtype of a 𝑔. If 𝑔 maps the standard frame Ω of
the Leech lattice modulo 2 to a frame of subtype 𝑡 then 𝑔 has subtype 𝑡.

The subtype is returned as a pair of integers as in the corresponding method in class XLeech2, see section
Computations in the Leech lattice modulo 2 in the guide for background.

Since the subtype is determined by the size of the denominators of the representation 4096𝑥, it can be
computed very fast.

type_Q_x0()

Return type of element if it is in the subgroup 𝑄𝑥0

If the element is in the subgroup 𝑄𝑥0 of the monster then the function returns the type of the vector in the
Leech lattice modulo 2 corresponding to this element. That type is 0, 2, 3, or 4.

The function raises ValueError if the element is not in the subgroup 𝑄𝑥0.
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1.7 The Coxeter group 𝑌555 and the Bimonster

We want to find a homomorphism from the Coxeter group 𝑌555 into the Bimonster

Module mmgroup.bimm contains an implementation of a (fixed) homomorphism from the Coxeter group 𝑌555 into the
Bimonster.

1.7.1 Description of the task to be done

The wreath product M ≀ 2 of the Monster M with the group 𝑍2 of order 2 is called the Bimonster. In ATLAS notation
[CCN+85] the Bimonster has structure (M × M).2. It is generated by M × M and an involution swapping the two
copies of M.

A Coxeter group is a group generated by a finite set 𝑠1, . . . , 𝑠𝑘 of involutions with a set of relations (𝑠𝑖, 𝑠𝑗)
𝛼𝑖,𝑗 = 1 for

each pair 𝑠𝑖, 𝑠𝑗 of involutions. The Coxeter groups discussed in this application are given by graphs, where the vertices
of the graph correspond to the generators 𝑠𝑖. In the sequel a vertex of a graph describing a Coxeter group will be called
a node. If two nodes 𝑠𝑖, 𝑠𝑗 are connected by an edge then we have a relation (𝑠𝑖, 𝑠𝑗)

3 = 1; otherwise we have a relation
(𝑠𝑖, 𝑠𝑗)

2 = 1. In the last case the generators 𝑠𝑖 and 𝑠𝑗 commute.

Norton and Ivanov have shown that the Bimonster is isomorphic to a certain Coxeter group, together with a single
additional relation, see [Nor92], [Iva92]. That presentation of the Bimonster is called 𝑌555.

The graph corresponding to the Coxeter relations in 𝑌555 is given in the following Figure 1. The names of the generating
reflections of 𝑌555 in that figure are as in the ATLAS [CCN+85]. We let 𝑌555 be the Coxeter group given by the
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Fig. 1: Coxeter relations in the group Y_555

generators and relations in Figure 1 together with the following additional relation:

(𝑎𝑏1𝑐1𝑎𝑏2𝑐2𝑎𝑏3𝑐3)10 = 1 .

The purpose of this application is to implement the mapping from the group 𝑌555 to the Bimonster. In the sequel we
write 𝑌555 for both, the graph in Figure 1, and the group defined above.
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1.7.2 Extending 𝑌555 to the incicdence graph of a projective plane

The graph 𝑌555 can be extended to the incidence graph IncP3 of the projective plane P3 over the field F3. The 26-
Node Theorem states that there is a homomorphism from the Coxeter group given by IncP3 to the Bimonster M ≀ 2,
see [CNS88]. A presentation of the Bimonster with the generators of that Coxeter group and defining relations is well
known see e.g. [Nor02], [Far12] for an overview. We also write IncP3 for the Coxeter group corresponding to to the
incidence graph IncP3.

In practice it turns out that working with IncP3 is more flexible than working with 𝑌555.

The projective plane 𝑃3 contains 13 points 𝑃𝑖 and 13 lines 𝐿𝑖, 0 ≤ 𝑖 < 13. Point 𝑃𝑖 is incident with line 𝐿𝑗 if
𝑖 + 𝑗 ≡ 0, 1, 3, or 9 (mod 13). This construction of 𝑃3 is also used in [CNS88], [Nor02], and [Far12]. We may map
the 16 nodes of 𝑌555 to a subset of the set of the 26 nodes of IncP3 as follows:

𝑎 𝑏1 𝑏2 𝑏3 𝑐1 𝑐2 𝑐3 𝑑1 𝑑2 𝑑3 𝑒1 𝑒2 𝑒3 𝑓1 𝑓2 𝑓3
𝑃0 𝐿0 𝐿1 𝐿3 𝑃1 𝑃2 𝑃11 𝐿8 𝐿7 𝐿5 𝑃5 𝑃7 𝑃4 𝐿4 𝐿6 𝐿10

In the description of the Monster group, the ATLAS [CCN+85] uses the names of the 16 nodes of 𝑌555 given in the
table above. It also uses names for remaining 10 nodes of 𝑃3, and it states the incidences between all these nodes. We
number the remaining nodes in the ATLAS (preserving their incidence relations) as indicated in the follwing table:

𝑓 𝑎1 𝑎2 𝑎3 𝑔1 𝑔2 𝑔3 𝑧1 𝑧2 𝑧3
𝐿9 𝑃3 𝑃12 𝑃10 𝑃9 𝑃8 𝑃6 𝐿11 𝐿2 𝐿12

1.7.3 Implementing the Bimonster and the homomorphism from 𝑌555 to it

The projective plane over F3 and its automorphism group

The module implements the projective plane over F3

Module inc_p3 implements the projective plane P3 over F3 and its automorphism group. Points and lines in P3 are
implemented as instances of class P3_node, automorphisms of P3 are implemented as instances of class AutP3.

We mainly work with the incidence graph containing the points and the lines of P3 as vertices. The union of the set of
the points and of the set of the lines in P3 is called the set of the nodes of the projective plane P3.

class mmgroup.bimm.P3_node(obj)
Models a point or a line the projective plane P3.

We number the 13 points in the projective plane P3 over F3 from 0 to 12, and the 13 lines from 13 to 25. Then
a point with number i and a line with number j are incident if 𝑖 + 𝑗 ≡ 0, 1, 3, or 9 (mod 13).

Some strings are also accepted as a description of a point or a line in P3. The 13 points may be denoted as
‘P0’,. . . ,’P12’, and the the 13 lines may be denoted as ‘L0’,. . . ,’L12’.

The names ‘a’, ‘b1’, ‘b2’, ‘b3’, ‘c1’, ‘c2’, ‘c3’, etc. refer to the embedding of the 𝑌555 graph into the projective
plane P3, as described in the documentation of the application. For background, see also [CNS88], [Far12].

Parameters
obj – An integer, a string, or an instance of class AutP3 describing a point or a line in the
projective plane P3.

name()

Return the name of the P3 node in standard notation

property ord

Return internal number of instance of class P3_node
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y_name()

Return the name of the P3 node in Y_555 notation

class mmgroup.bimm.AutP3(mapping=None, data=None)
Models an automorphism of the projective plane P3.

This class models the automorphism group AutP3 of the projective plane P3 over the field F3.

Elements of AutP3 should be given as (partial) mappings of points or lines. The standard way to describe an
automorphism in AutP3 is a dictionary containing a partial mapping of points or lines. Here the keys and the
values of the dictionary must either all be points or all lines; they must be objects describing points or lines as in
the constructor of class AutP3. A mapping between points or lines is accepted if it extends to a unique mapping
of the projective plane P3.

Parameters

• mapping – Describes a mapping of points or lines in the projective plane P3 as indicated in
the table below.

• data – Additional data (optional) that describe a mapping of points or lines in some special
cases.

Table 23: Legal types for parameter mapping in the constructor

type Evaluates to
None Creates the neutral element (default).
class AutP3 A deep copy of the given automorphism in class AutP3 is returned.
dict Dictionary containing a mapping between points or lines as described above.
zip object zip(x,y) is equivalent to dict(zip(x,y))
string ‘r’ Then we construct a random automorphism (depending on parameter data) as

described below.
string ‘p’ Then data must be a list of 13 integers (taken modulo 13), that describes a map-

ping of the 13 points.
string ‘l’ Then data must be a list of 13 integers (taken modulo 13), that describes a map-

ping of the 13 lines.

Remarks:

If parameter mapping is the string 'r', then an optional parameter data of type dict or zip that describes a
partial mapping of points or lines may follow. In this case we construct a random automorphism of P3 satifying
the constraints of the mapping given by parameter data, if present. Such a random automorphism is chosen
from a uniform distribution of all possible cases.

For instances g1 and g2 of this class, g1 * g2means group multiplication, and g1 ** nmeans exponentiation
of g1 with the integer n. g1 ** (-1) is the inverse of g. g1 / g2 means g1 * g2 ** (-1).

g1 ** g2 means g2**(-1) * g1 * g2.

Multiplying an object of class P3_node with an object of class AutP3means application of an automorphism of
P3 to a point or line in P3.

line_map()

Return the automorphism as a line permutation list of length 13

Element g maps line x to line g.line_map[x]. The entries in the list are reduced modulo 13.

map()

Return the automorphism as a permutation list of length 26
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Element g maps P3 node``x`` to node g.map[x]. Here the indices and values in the returned list are the
numbers of the nodes as in class P3_node.

order()

Return order of element of the group AutP3

point_map()

Return the automorphism as a point permutation list of length 13

Element g maps P3 point``x`` to point g.map[x].

mmgroup.bimm.P3_incidences(*x)
Return list of P3 nodes incident with given P3 nodes

Here each argument of the function is a list of nodes of P3 describing a set 𝑆𝑖 of nodes (i.e. points or lines) of
P3. An entry of such a list may be anything that is accepted by the constructor of class P3_node. An integer
argument is interpreted as a singleton, i.e. a set of size 1. A comma- separated string of names of P3 nodes is
accepted as a set of P3 nodes.

The function returns the sorted list of P3 nodes (i.e instances of class AutP3 that are incident with at least one
node in each set 𝑆𝑖 and not contained in any of the sets 𝑆𝑖.

mmgroup.bimm.P3_incidence(*x)
Return (unique) P3 node incident with given P3 nodes

Here each argument describes a P3 node (i.e. a point or a line); it may be anything accepted by the constructor
of class P3_node.

If there is a unique P3 node incident with all these P3 nodes then the function returns that node as an instance of
class P3_node.

Otherwise the function raises ValueError.

This function is a simplified version of function P3_incidences. Its typical use case is to find a line through
two points or the intersection point of two lines.

mmgroup.bimm.P3_remaining_nodes(x1, x2)
Complete points on a line or lines intersecting in a point

If arguments x1, x2 are different points or lines in P3 then the function returns the list of the two remaining
points on the line through x1 and x2, or the list of the two remaining lines containing the intersection point of
x1 and x2, respectively. Otherwise the function raises ValueError.

Arguments x1, x2may by anything accepted by the constructor of class P3_node. The result is returned as list
of two instances of class P3_node.

mmgroup.bimm.P3_is_collinear(l)
Check if list of P3 nodes contains 3 collinear nodes

Argument l of the function is a list of nodes of P3 describing a set of nodes (i.e. of points or lines) of P3. An
entry of such a list may be anything that is accepted by the constructor of class P3_node. A comma-separated
string of names of P3 nodes is accepted as a set of nodes.

The function returns True if that set of nodes contains 3 collinear points or 3 collinear lines, and False otherwise.
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Norton’s presentation of the Monster group

This module implements Norton’s generators of the Monster.

Norton [Nor02] has given a presentation of the Monster group that greatly simplifies a mapping from the projecive
plane presentation of the Monster to the representation of the Monster in [Gri82] and [Con85]. Our implemention
of the Monster is based on the representation in [Con85]. So we may use the presentation in [Nor02] to construct a
homomorphism from the projecive plane representation of the Monster into our implementation of the Monster that
can be computed in practice.

mmgroup.bimm.Norton_generators(check=False)
Return the images of Norton’s generators in the Monster

Norton [Nor02] defines a presention of the Monster with generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥) and relations.

The function returns the images of the presentation of these generators in the Monster under a (fixed) homo-
morphism. The result is returned as a quintuple of instances of class MM, corresponding to the images of these
generators in the Monster.

If parameter check is True then we also check the relations in this presentation.

The Bimonster and its presentation 𝑌555

This module implements the Bimonster.

Class BiMM in this module implements an element of the Bimonster M ≀ 2 as described in the documentation of this
application. Let IncP3 be the Coxeter group as in that documentation. Function P3_BiMM maps a word of generators
of IncP3 into the Bimonster. The generators of IncP3 correspond to the points and lines of the projective plane P3 over
the field F3. A point or a line of P3 is implemented as an instance of class P3_node in module inc_p3.

There is also a natural mapping from the automorphism group of P3 into the Bimonster compatible with the mapping
from the Coxeter group into the Bimonster. Function AutP3_BiMM computes that mapping. An automorphism of P3
is implemented as an instance of class AutP3 in module inc_p3. For background see [Nor02].

class mmgroup.bimm.BiMM(*args)
This class models an element of the Bimonster.

The Bimonster is the group M ≀ 2 of structure (M×M).2, where M is the Monster group.

Parameters

• m1 (Instance of class MM) – An element 𝑚1 of the Monster that embeds into the Bimonster
as (𝑚1, 1). Default is the neutral element 1 of the Monster.

• m2 (Instance of class MM) – An element 𝑚2 of the Monster that embeds into the Bimonster
as (1,𝑚2). Default is the neutral element 1 of the Monster.

• e (integer) – An optional exponent of the involution 𝛼, default is 0. Conjugation of an
element of M×M by 𝛼 means swapping the two factors in the direct product.

Returns
The element (𝑚1,𝑚2) · 𝛼𝑒 of the Bimonster

Return type
Instance of class BiMM

Arguments m1 or m2 may be anything that is accepted by the constructor of class MM as a single argument.

Alternatively, m1 may be an instance of class BiMM; then arguments m2 and e must be dropped.
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Let g1 and g2 be instances of class BiMM representing elements of the Bimonster group. g1 * g2 means group
multiplication, and g1 ** n means exponentiation of g1 with the integer n. g1 ** (-1) is the inverse of g.
g1 / g2 means g1 * g2 ** (-1). We have 1 * g1 == g1 * 1 == g1 and 1 / g1 == g1 ** (-1).

g1 ** g2 means g2**(-1) * g1 * g2.

decompose()

Decompose the element of the Bimonster

The function returns a triple (m1, m2, e) such that the element of the Bimonster is equal to (𝑚1,𝑚2)·𝛼𝑒.
Here m1 and m2 are instances of class MM representing the elements 𝑚1 and 𝑚2 of the Monster, and e is
equal to 0 or 1.

order()

Return the order of the element of the Bimonster

mmgroup.bimm.P3_BiMM(pl=[])
Map a word of generators in IncP3 into the Bimonster

Parameters
pl (List containing integers, strings, or instances of class P3_node) – List of generators in IncP3.
Each entry in the list should be an instance of class P3_node. Such an entry may also be an integer
or a string accepted by the constructor of class P3_node.

Returns
The image of the word of the given generators in the Bimonster

Return type
Instance of class BiMM

An integer pl or an instance pl of class P3_node is considered as a word of length 1.

pl may also be a string of alphanumric identifiers separated by commas. This is interpreted as a sequence of
generators, where the names of the generators are interpreted as in the constructor of class P3_node.

mmgroup.bimm.AutP3_BiMM(g)
Map an automorphism of P3 into the Bimonster

Parameters
g (Instance of class AutP3) – Automorphism of P3

Returns
The image of the automorphism of P3 in the Bimonster

Return type
Instance of class BiMM

Parameters g may be anything that is accepted by the constructor of class AutP3 as a single argument.

Example: Checking the spider relation in the group 𝑌555

As stated in the description of the group 𝑌555 , the spider relation in that group is:

(𝑎𝑏1𝑐1𝑎𝑏2𝑐2𝑎𝑏3𝑐3)10 = 1 .

We can quickly check the spider relation as follows:

1.7. The Coxeter group 𝑌555 and the Bimonster 73



mmgroup, Release mmgroup v1.0.0

# Class BiMM implements an element of the Bimonster.
# Function P3_BiMM maps a product of generators of
# the Coxeter group IncP3 to the Bimonster.
from mmgroup.bimm import BiMM, P3_BiMM
# List of generators of IncP3 corresponding to the spider relation
spider = ['a', 'b1', 'c1', 'a', 'b2', 'c2', 'a', 'b3', 'c3'] * 10
# Let 'Spider' be the image of the spider relation in the Bimonster
Spider = P3_BiMM(spider)
# Check that this is equal to >the neutral element of the Bimonster
assert Spider == BiMM(1)

Alternatively, the spider relation can be verified as follows:

from mmgroup.bimm import P3_BiMM
# Put Spider1 = a * b_1 * c_1 * a * b_2 * c_2 * a * b_3 * c_3.
# Here we enter that product into the Bimonster as a string
Spider1 = P3_BiMM('a, b1, c1, a, b2, c2, a, b3, c3')
# Check that Spider1 has order 10 in the Bimonster
assert Spider1.order() == 10

1.7.4 Construction of the mapping from the Coxeter group into the Bimonster

Let IncP3 be the Coxeter group generated by the nodes 𝑃𝑖, 𝐿𝑖, 0 ≤ 𝑖 < 13 of the projective plane P3 as above, and let
AutP3 be the automorphism group of P3. Let IncP3 : AutP3 be the split extension of the group IncP3 by the factor
group AutP3, where AutP3 operates naturally on the generating reflections of the Coxeter group IncP3.

In this section we construct a mapping from IncP3 : AutP3 to the Bimonster.

Therefore we use the Norton’s presentation [Nor02] of the Monster. Then we follow the ideas in Farooq’s thesis [Far12]
for extending that presentation of the Monster to a homomorphism from the Coxeter group IncP3 to the Bimonster. We
assume that the reader is familiar with [Nor02] and we will adopt notation from ibid.

Norton’s presentation of the Monster and the Bimonster

Norton [Nor02] defines a presentation (𝑠, 𝑡, 𝑢, 𝑣, 𝑥, 𝛼) of the group IncP3 : AutP3, where 𝑠, 𝑡, 𝑢 ∈ AutP3, 𝑣 =∏︀12
𝑖=1 𝑃𝑖, 𝑥 = 𝑃0𝐿0, 𝛼 = 𝑃0𝑣. Then he adds a relation that maps IncP3 to the Bimonster M ≀ 2, thus obtaining a

presentation of (M ≀2) : AutP3. Next he shows that this is actually a presentation of the direct product (M ≀2)×AutP3.
Then he adds a set of relations that cancel the factor AutP3, leading to a presentation of the Bimonster with the gen-
erators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥, 𝛼). It turns out that all these generators, except for 𝛼, are in the subgroup M × M of index 2 of
the Bimonster M ≀ 2. Finally, he gives a further set of relations in the generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥) cancelling the second
factor of the direct product M × M, thus obtaining a presentation of the Monster M. We remark that 𝑃𝑢

𝑖 = 𝑃𝑖−1

and 𝐿𝑢
𝑖 = 𝐿𝑖+1, with indices to be taken modulo 13, so that 𝑃𝑖 and 𝐿𝑖 can easily be computed from the generators

(𝑠, 𝑡, 𝑢, 𝑣, 𝑥, 𝛼).

Let IncP3+ be the subgroup of IncP3 generated be the products of generators 𝑃𝑖, 𝐿𝑖 of IncP3 with an even number of
factors. Then IncP3+ has index 2 in IncP3, and the presentation (𝑠, 𝑡, 𝑢, 𝑣, 𝑥) together with the relations mentioned
above defines a mapping 𝜑 from IncP3+ : AutP3 into the Monster.
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Mapping Norton’s presentation into our representation of the Monster

Essentially, our task is to construct an explicit mapping from the generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥, 𝛼) of IncP3 : AutP3 into the
BimonsterM≀2. A first step for achieving this goal is to actually construct a mapping 𝜑 from the generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥)
of IncP3+ : AutP3 to M.

In [Nor02] for each point 𝑃𝑖 an element 𝑃 *
𝑖 of of the subgroup M×M of the Bimonster is defined. The elements 𝑃 *

𝑖

are called the stars (corresponding to the points 𝑃𝑖); and it is shown that AutP3 permutes the stars 𝑃 *
𝑖 in the same way

as it permutes the corresponding points. Actually, the stars 𝑃 *
𝑖 are defined as words of generators 𝑃𝑖, 𝐿𝑖 of even length,

modulo the relations defining the Bimonster.

According to [Nor02] we have 𝜑(𝑥) = 𝜏 for the generator 𝑥, where 𝜏 is the triality element of the Monster. There it is
also shown that the stars and the (products of an even number of) points map to elements of the extraspecial subgroup
𝑄𝑥0 (of structure 21+24) of the Monster. In [Nor02] explicit images of the points and stars in 𝑄𝑥0 are constructed up
to sign. More specifically, the images of these elements are given in the Leech lattice modulo 2, which is isomorphic
to the quotient of 𝑄𝑥0 by its centre {1, 𝑥−1}. It is easy to see that the signs of the images of the points and stars may
be chosen arbitrarily, with the only restriction that the product 𝑃 *

0 𝑃
*
1 𝑃

*
3 𝑃

*
9 must be mapped to the element 𝑥Ω of 𝑄𝑥0,

and not to its negative 𝑥−Ω. It can be shown that the tuple (𝑃0𝑃1, . . . , 𝑃0𝑃12, 𝑃
*
1 , . . . , 𝑃

*
12), when taken modulo the

centre of 𝑄𝑥0, corresponds to a basis of the Leech lattice modulo 2. So for defining the mapping 𝜑 on the points and
the stars it suffices to specify the signs of the images of the entries of that tuple. It turns out that everything works fine
if we declare all these signs to be positive. This means that for any such image 𝑥𝑑𝑥𝛿 ∈ 𝑄𝑥0, with 𝑑 ∈ 𝒫, 𝛿 ∈ 𝐶*, we
choose 𝑑 to be a ‘positive’ element of the Parker loop 𝒫 , according to our construction of 𝒫 .

With this choice the mapping 𝜑 is uniquely defined on the points and on the stars; and we shall see that it is also uniquely
defined on all generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥) of the presentation given in [Nor02]. The functions PointP3 and StarP3 in
module mmgroup.bimm.p3_to_mm compute the mapping 𝜑 on the points and the stars, respectively.

The mapping 𝜑 is already defined on 𝑥 and on 𝑣 (since 𝑣 is a product of points). Generators 𝑠, 𝑡, 𝑢, are defined as
automorphisms in AutP3; so it suffices compute 𝜑(𝑎) for 𝑎 ∈ AutP3.

It is also shown in [Nor02] that the images of elements of AutP3 are in the centralizer 𝐺𝑥0 (of structure 21+24.Co1)
of the element 𝑥−1. Note that the images of the points and the stars generate the group 𝑄𝑥0; so the action of any
automorphism in AutP3 is determined (as an element of 𝐺𝑥0) by its action on the points and the stars, up to sign. The
group AutP3 is the simple group 𝐿3(3) in ATLAS notation. Thus it is generated by its elements of odd order. For any
𝑔 ∈ 𝐺𝑥0 at most one of the elements 𝑔, 𝑥−1 · 𝑔 has odd order, so that the correct image of any element of AutP3 of
odd order (and hence the image of the any element of AutP3) in 𝐺𝑥0 is uniquely defined. So we can also construct the
images of the generators (𝑠, 𝑡, 𝑢). Function Norton_generators in module mmgroup.bimm.p3_to_mm returns the
images of the generators (𝑠, 𝑡, 𝑢, 𝑣, 𝑥) under our mapping 𝜑.

Faaroq [Far12] had to perform strenuous calculations for actually computing 𝜑 on AutP3, since he had to use the
representations of the groups 𝐺𝑥0 and M available in 2012. With our construction of the Monster and of 𝐺𝑥0 we are
in a much more comfortable situation. Function AutP3_MM in module mmgroup.bimm.p3_to_mm quickly computes
the mapping 𝜑 on AutP3. In the remainder of this subsection we discuss the operation of that function.

The relevant automorphsims 𝑎 ∈ AutP3 are given as mappings between the 13 points and the 13 stars, where the stars
are transformed in the same way as corresponding points. Using our contruction of 𝜑 on the points and the stars, the
image 𝜑(𝑎) can be given as an automorphism of 𝑄𝑥0 in 𝐺𝑥0, where 𝐺𝑥0 operates on 𝑄𝑥0 by conjugation. Given such
an automorphism 𝛾 on 𝑄𝑥0, the C function xsp2co1_elem_from_mapping in file xsp2co1_map.c computes the
corresponding element 𝑔 of the group 𝐺𝑥0 up to sign.

We close with some remarks on how the C function xsp2co1_elem_from_mapping works.

Class Xsp2_Co1 in module mmgroup.structures.xsp_co1 wraps fast C functions for computing in the group 𝐺𝑥0,
so that computations in 𝐺𝑥0 are easy. Given an automorphism 𝛾 of 𝑄𝑥0 as above, we can easily compute the image
𝛾(Ω̃), where Ω̃ is the vector in the Leech lattice modulo 2 corresponding to the standard frame in the Leech lattice.
The C function gen_leech2_reduce_type4 in file gen_leech_reduce.c can compute an element ℎ1 ∈ 𝐺𝑥0 that
maps 𝛾(Ω̃) to Ω̃, see section Computations in the Leech lattice modulo 2 in the guide for developers for mathematical
background. So if 𝑔 ∈ 𝐺𝑥0 corresponds to the automorphism 𝛾 then 𝑔ℎ1 corresponds to an automorphism 𝛾1 of 𝑄𝑥0
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fixing Ω̃. The stabilizer of Ω̃ in 𝐺𝑥0 is a group 𝑁𝑥0 of structure 21+24.211.𝑀24. The automorphism 𝛾1 can easily
be computed from 𝛾 and ℎ1. So it remains the considerably simpler task to compute an element of 𝑁𝑥0 correspond-
ing to the automorphism 𝛾1 of 𝑄𝑥0. This computation is done as described in the documentation of the C function
xsp2co1_elem_from_mapping.

From the Monster to the Bimonster

In this section we construct a mapping Φ from the group IncP3 : AutP3 to the Bimonster using the mapping 𝜑 :
IncP3+ : AutP3 → M defined in the last subsection.

The generator 𝛼 in IncP3 ∖ IncP3+ is an involution that acts on IncP3+ (and also on IncP3+ : AutP3) by conjugation.
Hence by Theorem 3.1 in [CNS88] there is a mapping Φ from IncP3 : AutP3 to the Bimonster M ≀ 2 given by:

Φ(𝑦) = (𝜑(𝑦), 𝜑(𝑦𝛼)) ∈ M×M , for 𝑦 ∈ IncP3+ : AutP3,

and Φ(𝛼) is the involution in M ≀ 2 swapping the two copies of M. For simplicity, we will also write 𝛼 for the element
Φ(𝛼) of M ≀ 2.

Since 𝛼 =
∏︀12

𝑖=0 𝑃𝑖 commutes with all points 𝑃𝑖 and also with AutP3, we have:

Φ(𝑃𝑖) = 𝛼 · (𝜑(𝛼 · 𝑃𝑖), 𝜑(𝛼 · 𝑃𝑖)) ,

Φ(𝑎) = (𝜑(𝑎), 𝜑(𝑎)) , for 𝑎 ∈ AutP3 .

It remains to compute Φ(𝐿𝑖). Here have to compute 𝜑(𝐿𝛼
𝑖 ). Therefore we will use the follwing fact:

It easy to show that the elements of the Bimonster M ≀ 2 that are conjugate to 𝛼 are precisely the elements of shape
𝛼 · (𝑚,𝑚−1), 𝑚 ∈ M.

Since Φ(𝑃0) = 𝛼 · (𝜑(𝛼 ·𝑃0), 𝜑(𝛼 ·𝑃0)) holds for the involution 𝑃0, we conclude that Φ(𝑃0) is conjugate to 𝛼 in M ≀2.
In a Coxeter group all nodes connected by a path of edges are conjugate; so the nodes Φ(𝐿𝑖) are also conjugate to 𝛼.
Together with the fact stated above we obtain:

Φ(𝐿𝑖) = 𝛼 · (𝜑(𝛼 · 𝐿𝑖), 𝜑(𝛼 · 𝐿𝑖)
−1) .

Note that 𝜑(𝛼 · 𝐿0) = 𝜑(𝑣) · 𝜏 , where 𝜏 is the triality element in the Monster. Furthermore, we have

𝜑(𝛼 · 𝐿𝑖) = 𝜑(𝛼 · 𝐿0)𝜑(𝑢)
𝑖

.
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1.8 Version history

Table 24: List of releases

Version Date Description
0.0.1 2020-05-20 First release
0.0.2 2020-06-04 Order oracle added; bugfixes
0.0.3 2020-06-10 Bugfixes in code generator
0.0.4 2020-06-15 MSVC compiler is now supported
0.0.5 2021-08-02 Word shortening in monster implemented
0.0.6 2021-12-01 Group operation accelerated
0.0.7 2021-12-01 Bugfix in version generation
0.0.8 2022-07-12 Performance improved
0.0.9 2022-09-01 Performance improved
0.0.10 2022-10-11 Support for cibuildwheel added
0.0.11 2022-10-19 Bugfixes and macOS version added
0.0.12 2023-01-09 Support for the group Y_555 and the Bimonster
0.0.13 2023-10-27 Supports numbering elements of the Monster, and Python 3.12
0.0.14 2024-01-19 Demonstration code for reduction in the Monster added
1.0.0 2024-01-23 First official release (documentation updated)
1.0.1 2024-02-23 Support for exporting C functions from libraries
1.0.2 2024-02-27 Changes in build system regarding shared libraries
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CHAPTER

TWO

THE MMGROUP GUIDE FOR DEVELOPERS

2.1 Introduction

This guide for developers explains some selected topics of the mmgroup project which are relevant for developers who
want to make changes or bugfixes. It also explains some mathematical aspects of the implementation which are not
covered by [Sey20].

The guide is far from complete and we hope that we can provide more information in future versions of it.

2.2 Directory structure

The directory is organized as follows:

•[Root directory]
Contains setup.py and configuration files

–docs

∗sources
Source files for documentation with Sphinx

–src

∗ mmgroup The directory containing the package, and also extensions and shared libraries

· dev Contains stuff needed by developers, including scripts and source file for generating C code
automatically.

· generate_c The code generator (for generating C code automatically)

· structures Some basic structures used by the modules in mmgroup

· tests Test scripts and some algebraic structures used for testing with pytest

Directory src/mmgroup/dev has the following subdirectories:

• c_files Contains automatically generated C code

• clifford12 Scripts for generating C code related to the subgroup 21+24.Co1 of the monster and also to a Clifford
group resembling that subgroup.

• generators Scripts for generating tables related to the monomial operation of the element 𝜉 of M, and also for
generating C code related to certain subgroups of M.

• hadamard Scripts for generating C code related to Hadamard matrices

• mat24 Scripts for generating C code related to the Mathieu group Mat24
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• mm_basics Scripts for generating C code related to the representation 𝜌𝑝 of M

• mm_op Scripts for generating C code related to the operation of M on 𝜌𝑝 for specific values 𝑝

• mm_reduce Scripts for generating C code related to the word shortening algorithm and the computation of the
order in M.

• pxd_files Contains files with extension .pyx, .pxd, .pxi used by Cython, which are automatically gener-
ated or copied from a different source location

Directory src/mmgroup/tests has the following subdirectories:

• groups Slow python implementations of certain groups, including a preimage of M, for testing.

• spaces Slow python implementations of certain vector spaces, including the space 𝜌𝑝, for testing.

• test_xxx Test scripts (to be executed with pytest) for testing module xxx.

2.3 Some mathematical aspects of the implementation

2.3.1 Implementing Automorphisms of the Parker loop

A standard automorphism 𝜋 of the Parker loop 𝒫 is implemented as an array of 12 integers of type uint32_t. The
lower 13 bits of the 𝑖-th entry of that array contain the image of the 𝑖-th basis element (𝑏𝑖, 0) of the Parker loop, where
𝑏𝑖 is the 𝑖-th basis vector of the Golay code 𝒞. These images describe the automorphism 𝜋 uniquely. Each element of
𝒫 has a unique representation as a tuple 𝑑 = (𝑑, 𝜆), 𝑑 ∈ 𝒞, 𝜆 ∈ F2.

A key task is to compute the image (𝑑, 𝜆) · 𝜋 of an element (𝑑, 𝜆) of the Parker loop under the automorphism 𝜋. By
Lemma 4.1 in [Sey20] there is a quadratic form 𝑞𝜋 with associated bilinear form 𝜃𝜋 on the Golay code satisfying

𝜃𝜋 = 𝜃𝜋 + 𝜃 , where 𝜃𝜋(𝑑, 𝑒) = 𝜃(𝑑𝜋, 𝑒𝜋) ,

(𝑑, 𝜆)𝜋 = (𝑑𝜋, 𝜆 + 𝑞𝜋(𝑑)) ,

for any (𝑑, 𝜆) ∈ 𝒫 . So the image (𝑑, 𝜆) ·𝜋 can be computed if 𝑞𝜋(𝑑) can be computed. A functional value of 𝑞𝜋(𝑑) can
easily be computed from the associated bilinear from 𝜃𝜋‘ if the values 𝑞𝜋(𝑏𝑖) are known for all basis vectors 𝑏𝑖. The
values 𝑞𝜋(𝑏𝑖) can be computed from the sign bits of the images if the basis vectors.

So it suffices to compute the bilinear form 𝜃𝜋 as a 12 × 12 bit matrix. The first term 𝜃 of 𝜃𝜋 does not depend on 𝜋 and
can be stored as a constant. The second term 𝜃𝜋 of that matrix is computed as follows:

Let 𝑐𝑖 = (𝑏𝑖)
𝜋 , and let 𝐶 be the matrix with entries 𝑐𝑖,𝑗 such that 𝑐𝑖 =

∑︀
𝑗 𝑐𝑖,𝑗𝑏𝑗 . So 𝐶 is just the matrix of the images

of the basis vectors, ignoring the signs of the Parker loop.

Row 𝑖, column 𝑗 of matrix 𝜃𝜋 is equal to 𝜃(𝑐𝑖, 𝑐𝑗). Since 𝜃(𝑐𝑖, 𝑐𝑗) is linear in its second argument, we have

𝜃𝜋(𝑐𝑖, 𝑐𝑗) =
∑︁
𝑘

𝑐𝑗,𝑘𝜃(𝑐𝑖, 𝑏𝑘) ,

𝜃𝜋(𝑐𝑖) = 𝜃(𝑐𝑖) · 𝐶⊤ .

Here 𝜃𝜋(𝑐𝑖) is just the 𝑖-th row of the bit matrix 𝜃𝜋 . We also store the values 𝜃(𝑑) for all 𝑑 ∈ 𝒞 in a table. Thus the
bilinear form 𝜃𝜋 can essentially be computed as a product of two 12 × 12 bit matrices.

We store the lower triangular submatrix of the bit matrix 𝜃𝜋 in bits 13, ..., 24 of the array representing the auto-
morphism 𝜋 of the Parker loop.
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2.3.2 Implementing generators of the Monster group

The operation 𝑦𝑓 · 𝑥𝑒 · 𝑥𝜖

The operation 𝑔 = 𝑦𝑓 · 𝑥𝑒 · 𝑥𝜖 on 𝜌𝑝 is coded in function mm_op<p>_xy in the automatically generated C file
mm<p>_op_xy.c for the modulus p. The C function performs that operation for arbitrary 𝑒, 𝑓 ∈ 𝒫 and 𝜖 ∈ 𝒞* in
a single pass. That operation is monomial and the formula for it can easily be deduced from the information in [Sey20].

For 𝑣 ∈ 𝜌𝑝 the C program calculates the components in 𝑉𝐴, 𝑉𝐵 , 𝑉𝐶 . . . of the result 𝑣 · 𝑔 in their natural order. For
implementing such a program it is useful to have a formula for the operation of 𝑔−1 = 𝑥𝜖 · 𝑥𝑒 · 𝑦𝑓 . In the sequel we
state the operation of 𝑔−1 on 𝜌𝑝.

In this subsection we use the operator ‘⊕’ for the programmer’s multiplication in the Parker loop 𝒫 , which we define
by:

(𝑑1, 𝜆1) ⊕ (𝑑2, 𝜆2) = (𝑑2 + 𝑑2, 𝜆1 + 𝜆2) , 𝑑1, 𝑑2 ∈ 𝒞, 𝜆1, 𝜆2 ∈ F2 .

Then ‘⊕’ is a simple XOR operation on a computer; and the standard product 𝑑1𝑑2 in the Parker loop is given by
𝑑1𝑑2 = (−1)𝜃(𝑑1,𝑑2)𝑑1 ⊕ 𝑑2 for 𝑑1, 𝑑2 ∈ 𝒫 . Note that ‘⊕’ depends on the selected cocycle 𝜃. We may store the
cocycles 𝜃(𝑑) in a table, with one 12-bit entry representing the element 𝜃(𝑑𝑍(𝒫)) of the Golay cocode for each of the
2048 cosets 𝑑𝑍(𝒫) of 𝑍(𝒫) = {±1,±Ω} in 𝒫 . So multiplication in 𝒫 is easy.

Put 𝑑[0] = 𝑑+, 𝑑[1] = 𝑑−, and 𝑋+
𝑑,𝛿 = 𝑋Ω𝑑,𝛿 if 𝑥Ω𝑑,𝛿 is short, 𝑋+

𝑑,𝛿 = 𝑋𝑑,𝛿 otherwise. Then

𝑋+
𝑑,𝑖

𝑔−1

−→ (−1)𝑠𝑋 ·𝑋+
𝑑⊕𝑓,𝑖 , with

𝑠𝑋 = 𝑃 (𝑓) + 𝑃 (𝑒𝑓) + (|𝜖| + 1)𝑃 (𝑑) + 𝑃 (𝑑𝑒𝑓) + ⟨𝑒, 𝑖⟩ +
⟨︀
𝑑, 𝑖|𝜖|𝜖𝐴(𝑒, 𝑓)𝜃(𝑓)

⟩︀
;

(𝑑[𝜏 ] ⊗1 𝑖)
𝑔−1

−→ (−1)𝑠𝑌𝑍 · 𝑑[𝜎]𝑑⊕𝑒⊕𝑓𝜎+1 ⊗1 𝑖 , with 𝜎 = 𝜏 + |𝜖| (mod 2) ,

𝑠𝑌𝑍 = (𝜎 + 1)𝜃(𝑓, 𝑒) + 𝜎𝑃 (𝑓) + 𝑃 (𝑑𝑒) + 𝑃 (𝑑𝑒𝑓) + ⟨𝑓, 𝑖⟩ +
⟨︀
𝑑, 𝜖𝜃(𝑒)𝜃(𝑓)𝜎+1

⟩︀
;

𝑋+
𝑑·𝛿

𝑔−1

−→ (−1)𝑠𝑇 ·𝑋+
𝑑·𝛿𝛿′ , for |𝑑| = 8, 𝛿 even , with 𝛿′ = 𝐴(𝑑, 𝑓) , and

𝑠𝑇 = 𝑃 (𝑒) + 𝑃 (𝑑𝑒) + ⟨𝑑, 𝜖⟩ + ⟨𝑒𝑓, 𝛿⟩ + |𝛿||𝜖|/2 ;

𝑋Ω𝑚·𝑖𝑗
𝑔−1

−→ (−1)𝑚|𝜖|+⟨𝑒𝑓,𝑖𝑗⟩ ·𝑋Ω𝑛·𝑖𝑗 , with 𝑛 = 𝑚 + ⟨𝑓, 𝑖𝑗⟩ ;

(𝑖𝑗)1
𝑔−1

−→ (−1)⟨𝑓,𝑖𝑗⟩(𝑖𝑗)1 .

The sign bits 𝑠𝑋 , 𝑠𝑌 𝑍 , and 𝑠𝑇 can also be computed as follows:

𝑠𝑋 = |𝜖| ⟨𝑑, 𝑖⟩ + ⟨𝑒, 𝑖⟩ + |𝜖|𝑃 (𝑑) + ⟨𝑒𝑓, 𝜃(𝑑)⟩ + ⟨𝑑, 𝜖𝜃(𝑒)⟩ + 𝑃 (𝑓) ;

𝑠𝑌 𝑍 = ⟨𝑓, 𝑖⟩ + ⟨𝑓, 𝜃(𝑑)⟩ +
⟨︀
𝑑, 𝜖𝜃(𝑒𝑓)𝜃(𝑓)𝜎+1

⟩︀
+ ⟨𝑓, 𝜃(𝑒)⟩ + 𝜎 ⟨𝑒, 𝜃(𝑓)⟩ + (𝜎 + 1)𝑃 (𝑓) ;

𝑠𝑇 = |𝛿||𝜖|/2 + ⟨𝑒𝑓, 𝛿⟩ + ⟨𝑒, 𝜃(𝑑)⟩ + ⟨𝑑, 𝜖𝜃(𝑒)⟩ .

The operation of the triality elements 𝜏𝑒

The operation 𝑔 = 𝜏𝑒 on 𝜌𝑝 is coded in function mm_op<p>_t in the automatically generated C file mm<p>_op_t.c for
the modulus p. Since 𝜏 has order 3, it suffices to present the formulas for 𝑒 = ±1. Note that 𝜏 fixes (𝑖𝑖)1. From the
discussion in [Sey20], Section 8, we obtain for 𝑖 ̸= 𝑗:

(𝑖𝑗)1
𝜏−→ 𝑋𝑖𝑗 −𝑋+

𝑖𝑗
𝜏−→ 𝑋𝑖𝑗 + 𝑋+

𝑖𝑗
𝜏−→ (𝑖𝑗)1 ,

2𝑋𝑖𝑗
𝜏−→ (𝑖𝑗)1 + 𝑋𝑖𝑗 + 𝑋+

𝑖𝑗
𝜏−→ (𝑖𝑗)1 + 𝑋𝑖𝑗 −𝑋+

𝑖𝑗
𝜏−→ 2𝑋𝑖𝑗 ,

2𝑋+
𝑖𝑗

𝜏−→ (𝑖𝑗)1 −𝑋𝑖𝑗 −𝑋+
𝑖𝑗

𝜏−→ −(𝑖𝑗)1 + 𝑋𝑖𝑗 −𝑋+
𝑖𝑗

𝜏−→ 2𝑋+
𝑖𝑗 ,

𝑋+
𝑑·𝑖

𝜏−→ (−1)⟨𝑑,𝑖⟩(𝑑− ⊗1 𝑖)
𝜏−→ (−1)𝑃 (𝑑)(𝑑+ ⊗1 𝑖)

𝜏−→ 𝑋+
𝑑·𝑖 ,

𝑋+
𝑑,𝛿

𝜏−→ 1
8

∑︀
𝜖 (−)𝛿,𝜖𝑋

+
𝑑,𝛿

𝜏−→ 1
8

∑︀
𝜖 (−)𝜖,𝛿𝑋

+
𝑑,𝛿

𝜏−→ 𝑋+
𝑑,𝛿 .
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The last formula describes the operation of 𝜏 on 𝑋+
𝑑,𝛿 , where 𝑑 is a preimage of an octad in the Parker loop, and 𝛿 is an

even element of the Golay cocode represented by a subset of that octad. The summation runs over all even subsets 𝜖
of that octad; and (−)𝛿,𝜖 means (−1)|𝛿∩𝜖|+|𝛿|/2 as in [Sey20]. We will briefly comment on the implementation of the
last formula.

For any octad 𝑑 as above we consider the row vector 𝑋+
𝑑 with 64 entries 𝑋+

𝑑,𝛿 , where 𝛿 runs over the 64 even subsets
of the octad corresponding to 𝑑. Then operation of 𝜏 on 𝑋+

𝑑 can be written as

𝑋+
𝑑

𝜏−→ 1
8𝑋

+
𝑑 ·𝐷 ·𝐻 𝜏−→ 1

8𝑋
+
𝑑 ·𝐻 ·𝐷 𝜏−→ 𝑋+

𝑑 .

Here matrix 𝐷 is a diagonal matrix with an entry (−1)|𝛿|/2 in the row and column corrsponding to 𝛿. Matrix 𝐻 is a
Hadamard matrix with an entry (−1)|𝛿∩𝜖| in the row and column corresponding to 𝛿 and 𝜖, respectively.

When implementing the muliplication with matrices 𝐷 and 𝐻 we have to be aware of the numbering of the entries
𝛿 used in Section The representation of the Monster group. Using that numbering, it turns out that matrix 𝐷 has
diagonal entries (−1)𝑤(𝑖(𝑖+1)/2), with 𝑖 running from 0 to 63, and 𝑤(𝑗) the bit weight of the binary representation
of a nonnegative integer 𝑗. Matrix 𝐻 is a (commuting) product of a permutation matrix 𝑃 , and a standard 64 × 64
Hadamard matrix 𝐻64 according to Sylvester’s construction. Matrix 𝑃 fixes entry 𝑖 if 𝑤(𝑖) is even and exchanges entry
𝑖 with entry 63 − 𝑖 otherwise.

Here multiplication with matrix 𝐻64 is the most time-consuming operation. We can speed this up by using the decom-
position:

𝐻64 = 𝐻2 ⊗𝐻2 ⊗𝐻2 ⊗𝐻2 ⊗𝐻2 ⊗𝐻2 , with 𝐻2 =

(︂
1 1
1 −1

)︂
.

Monomial operation of the generators 𝜉𝑒

Generator 𝜉 is an element of the subgroup 𝐺𝑥0 of the monster. The basis vectors with tags B, C, T, X (as explained
below) of the representation 𝜌 of the Monster span a subspace 98280𝑥 of 𝜌. The basis vectors with the tags listed above
(together with their opposite vectors) correspond to the short elements of the normal subgroup 𝑄𝑥0 of 𝐺𝑥0 of structure
21+24. The group 𝐺𝑥0 operates on these basis vectors in the same way as it operations on 𝑄𝑥0 by conjugation. Thus
𝐺𝑥0 (and hence also 𝜉±1) operates monomially on the basis vectors of 98280𝑥.

We have 𝑄𝑥0/{±1} ∼= Λ/2Λ. An element 𝑥 of 𝑄𝑥0 is short if it corresponds to a vector in the Leech lattice Λ of norm
4. The operation of 𝜉±1 on 𝑄𝑥0 (and hence also of 98280𝑥) is given by Lemma 9.5 in [Sey20].

In section The representation of the Monster group we use the following names and tags for the basis vectors of 98280𝑥.

Name Tag Entries Remarks
𝑋+

𝑖𝑗 B i, j; 0 <= j < i < 24
(1)

𝑋𝑖𝑗 C i, j; 0 <= j < i < 24
(1)

𝑋𝑜,𝑠 T o, s; 0 <= o < 759, 0 <=
s < 64 (2)

𝑋𝑑,𝑗 X d, j; 0 <= d < 2**11, 0
<= j < 24

(1),(3)

Remarks

(1) i and j, 0 <= i,j < 24 refer to basis vectors of the Boolean vector space in which the Golay code is defined.
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(2) o is one of 759 octads, s is one of 64 even subsets of octad d (modulo its complement in d), as described in
section Octads and suboctads.

(3) d with 0 <= d < 2048 refers to the Parker loop element d.

We group these basis vectrors into five boxes (labelled 1, . . . , 5) with each box containing at most 24576 entries.
Element 𝜉 permutes these boxes as follows:

Box1 → Box1 , Box2 → Box2 , Box3 → Box4 → Box5 → Box3 .

The mapping from the basis vectors to entries in boxes is:

Basis vector Box Entry
B[i,j] 1 0 + 32 * i + j
C[i,j] 1 768 + 32 * i + j
T[o,s], o < 15 1 1536 + 64 * o + s
T[o,s], 15 <= o < 375 2 64 * (o - 15) + s
T[o,s], o >= 375 3 64 * (o - 375) + s
X[d,j], d < 1024 4 32 * d + j
X[d,j], d >= 1024 5 32 * (d - 1024) + j

This subdivision looks weird, but is has quite a few advantages:

• The lower index (j, or s) has stride 1, and the stride of the higher index (i, o, or d) is the lowest possible power
of two. So accessing an entry is easy. In the C code for a representation derived from 𝜌 the entries of a vector of
such a representation are strided in the same way. So the tables computed under these assumptions can be used
in the C code for the operator 𝜉.

• Boxes are permuted as above, so the operation of 𝜉±1 can be stored in a set ot 5 tables encoding mappings
between boxes.

A similar, but finer subdivision of the whole space 𝜌 (and not only of the subspace 98280𝑥) is given in [Iva09], section
3.4.

We further subdivide a box into clusters, rows, and columns. Here a row always contains 32 columns; with either all or
just the first 24 columns being used. A cluster contains a variable nubmer of rows, and a box contains a variable numer
of clusters, as indicated in the following table. We also assign names to the boxes.

Box Name Size Clusters Rows Columns used
1 BC 2486 1 78 32
2 T0 23040 45 16 32
3 T1 24576 64 12 32
4 X0 24576 64 16 24
5 X1 24576 64 16 24

If a box has 𝑐 clusters, 𝑚 rows, and 𝑛 used columns, then the triple (𝑐,𝑚, 𝑛) is called the shape of the box.

It turns out that 𝜉 always maps the 𝑖-th cluster of a box to the 𝑖-th cluster of a (possibly different) box. This greatly
simplifies the implementation of the mapping. So it suffices to specify the mapping as a collection of permutations
inside a cluster. Since a cluster has size at most 2486, such a permutation can be stored in an array of 16-bit integers,
with indices relative to the beginning of the cluster.

An optimized implementation of a mapping 𝜉±1 between two boxes depends on the shape of these two boxes. We want
to use the same program code for both mappings, using different parameters in both cases. Therefore we implement
five procedures, labelled with a stage counting form 0 to 4. These procedures map the boxes as follows:
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Stage 𝜉 : 𝜉−1 : Mapping of shapes:
0 BC -> BC BC -> BC (1, 78, 32) -> (1, 78, 32)
1 T0 -> T0 T0 -> T0 (45, 16, 32) -> (45, 16, 32)
2 T1 -> X0 T1 -> X1 (64, 12, 32) -> (64, 16, 24)
3 X0 -> X1 X1 -> X0 (64, 16, 24) -> (64, 16, 24)
4 X1 -> T1 X0 -> T1 (64, 16, 24) -> (64, 12, 32)

The functions in module gen_xi_functions.c deal with the operation of the generator 𝜉 of the Monster on 𝑄𝑥0

and 98280𝑥. They are also used for computing tables describing the monomial operation of 𝜉±1 on 98280𝑥. Module
mmgroup.dev.generators.gen_xi_ref is a pure python substitute for this set of C functions; but calculating the
tables with python takes a rather long time.

Class MM_TablesXi in module mmgroup.dev.mm_basics.mm_tables_xi contains 3-dimensional arrays that can be
used for computing the monomial operation of 𝜉±1. In each array the first index (running from 0 to 4) indicates the
stage of the computation. as shown in the previuos table.

The following table decribes the entries of the arrays PERM_TABLES, SIGN_TABLES, OFFSETS, and SHAPES in
that class.

Table 1: Arrays encoding the monomial operation 𝜉±1

Array name Shape Meaning
PERM_TABLES (5, 2, c*m*n) Entry (s, e, h*m*n + i*n + j) is the index of the preimage of output

entry (h,i,j) in stage s under 𝜉𝑒+1; with [c, m, n] = SHAPES[s, 1].
SIGN_TABLES (5, 2, c*m) Bit j of entry (s, e, h*m + i) is the sign of the preimage of output

entry (h,i,j) in stage s under 𝜉𝑒+1; with [c, m, n] = SHAPES[s, 1].
OFFSETS (5, 2, 2) Entries (s, e, 0) and (s, e, 1) are the offests of the source box and the

destination box when computing 𝜉𝑒+1 in stage s.
SHAPES (5, 2, 3) Entries (s, 0) and (s, 1) are triples encoding the shape of the source

and the destiniation box at stage s.

Here we abbreviate the phrase “the entry in cluster h, row i, column j, of the output vector computed in stage s” to
“output entry (h,i,j) in stage s”. Entries in array PERM_TABLES are indices relative to the beginning of the current
cluster.

The following code block multiplies a vector v_in in the representation 𝜌 of the Monster with 𝜉𝑒 for 𝑒 = 1, 2 and stores
the monomial part of the result in the vector v_out. It uses the arrays described in the table above. The function in
that code block is tested in module mmgroup.tests.test_mm_op.test_table_xi.

from mmgroup.dev.mm_basics.mm_tables_xi import MM_TablesXi
tbl = MM_TablesXi()
PERM_TABLES = tbl.PERM_TABLES
SIGN_TABLES = tbl.SIGN_TABLES
OFFSETS = tbl.OFFSETS
SHAPES = tbl.SHAPES

def map_xi(v_in, e, v_out):
r"""Compute v_out = v_in * \xi**e, for e = 1, 2.

We compute the monomial part of v_out only.
v_in is a array of integers corresponding to a vector in the
representation \rho of the Monster. Vector v_out is

(continues on next page)
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(continued from previous page)

an empty vector of integers of the same size.
"""
for stage in range(5):

box_in = v_in[OFFSETS[stage][e-1][0]:]
box_out = v_out[OFFSETS[stage][e-1][1]:]
shape_in = SHAPES[stage][0]
shape_out = SHAPES[stage][1]
cluster_in_size = shape_in[1] * 32
cluster_out_size = shape_out[1] * 32
cluster_perm_size = shape_out[1] * shape_out[2]
cluster_sign_size = shape_out[1]
perm_table = PERM_TABLES[stage][e-1]
sign_table = SIGN_TABLES[stage][e-1]
for cluster in range(shape_out[0]):

cluster_in = box_in[cluster * cluster_in_size:]
cluster_out = box_out[cluster * cluster_out_size:]
cluster_perm = perm_table[cluster * cluster_perm_size:]
cluster_sign = sign_table[cluster * cluster_sign_size:]
for i in range(shape_out[1]):

for j in range(shape_out[2]):
x = cluster_in[cluster_perm[shape_out[2]*i + j]]
x = (-1)**(cluster_sign[i] >> j) * x
cluster_out[32 * i + j] = x

Non-monomial operation of the generators 𝜉𝑒

This subsection is yet to be written!

Conjugation of �̃�𝑑𝑥𝛿 with 𝑦𝑒

Sometimes we have to conjugate an element �̃�𝑑𝑥𝛿 , where �̃�𝑑 = 𝑥𝑑𝑥𝜃(𝑑), with 𝑦𝑒. We have

𝑦−1
𝑒 �̃�𝑑𝑥𝛿𝑦𝑒 = 𝑥𝛼

−1𝑥
𝛽
Ω�̃�𝑑�̃�

|𝛿|
𝑒 𝑥𝛿𝑥𝜖 ,

𝛼 = 𝜃(𝑑, 𝑒) + ⟨𝑒, 𝛿⟩1+|𝛿| + sign(𝑒) ,

𝛽 = 𝜃(𝑒, 𝑑) + ⟨𝑒, 𝛿⟩ + 𝑃 (𝑒)
|𝛿|

,

𝜖 = 𝐴(𝑑, 𝑒) + 𝜃(𝑒)
|𝛿|

.

2.3.3 Computations in the Leech lattice modulo 2

In this section we describe the operation of the Conway group Co1 on Λ/2Λ, where Λ is the Leech lattice. The
description of these orbits is taken from [Sey22], Appendix A.

This operation is important for computing in the subgroup 𝐺𝑥0 of structure 21+24.Co1 of the monster, as described in
[Con85] and [Sey20]. Let 𝑄𝑥0 be the normal subgroup of 𝐺𝑥0 of structure 21+24. The group Co1 = 𝐺𝑥0/𝑄𝑥0 is the
automorphism group of Λ/2Λ. We assume that Co1 and also 𝐺𝑥0 operate on Λ/2Λ by right multiplication. Let Ω in
Λ/2Λ be the type-4 vector corresponding to the the standard coordinate frame in Λ. The stabilizer of Ω is a subgroup
𝑁𝑥0 of 𝐺𝑥0 of structure 21+24.211.𝑀24. Thus the set of type-4 vectors in Λ/2Λ corresponds the set of right cosets
211.𝑀24∖Co1. We have 𝑁𝑥0∖𝐺𝑥0

∼= 211.𝑀24∖Co1. So identifying the right coset 𝑁𝑥0ℎ for a ℎ ∈ 𝐺𝑥0 reduces to the
computation of the frame Ωℎ.
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In our construction of the monster the element ℎ may be given as an arbitrary word in the generators of 𝐺𝑥0 (modulo
𝑄𝑥0). So it is important to find a short word 𝑔 in the the generators of 𝐺𝑥0 with 𝑔 ∈ 𝑁𝑥0ℎ. This can be achieved by
applying a sequences 𝑔′ = 𝑔′1, . . . , 𝑔

′
𝑘 of automorphisms of Λ/2Λ to Ωℎ such that Ωℎ𝑔′ = Ω, and each 𝑔′𝑖 corresponds

to a generator of 𝐺𝑥0 (modulo 𝑄𝑥0).

We assume that the reader is familiar with the Conway group Co1 and the geometry of the Leech lattice as described
in [Iva99], section 4.1 - 4.7.

Orbits of the group 𝑁𝑥0 in the Leech lattice mod 2

In this subsection we describe the orbits of 𝑁𝑥0 on Λ/2Λ. The type of a vector in 𝑣 ∈ Λ is the halved scalar product
1
2 ⟨𝑣, 𝑣⟩. The type of a vector in Λ/2Λ is the type of its shortest representative in Λ. Each vector in Λ/2Λ has type 0,
2, 3 or 4; and the group Co1 is transitive on the vectors of any of these types.

The orbits of the groups 𝑁𝑥0 on the vectors of type 2,3, and 4 on Λ have been described in [Iva99], Lemma 4.4.1. 𝑁𝑥0

acts monomially on the the lattice
√

8Λ, which has integers coordinates in the standard Euclidean basis. Thus an orbit
of 𝑁𝑥0 on Λ/2Λ can be described by the shapes of the shortest vectors in the corresponding orbit of

√
8Λ. Here the

shape of a vector is the multiset of the absolute values of the coordinates of the vector. E.g. a vector of shape (35119)
has 5 coordinates with absolute value 3 and 19 coordinates with absolute value 1.

A vector of type 2 or 3 in Λ/2Λ has two opposite representatives of the same type in Λ; so its shape is uniquely
defined. A vector of type 4 in Λ/2Λ has 2 · 24 representatives of type 4 in Λ which are orthogonal except when equal
or opposite. It is well known that a type-4 vector in Λ/2Λ corresponds to a coordinate frame in the Leech lattice in
standard coordinates, see e.g. [CS99], [Iva99].

The table at Lemma 4.4.1. in [Iva99] assigns a name and a shape to each orbit of 𝑁𝑥0 on the vectors of type 2, 3, and 4
in Λ. The table at Lemma 4.6.1. in [Iva99] assigns a name and one or more shapes to each orbit of 𝑁𝑥0 on the vectors
of type 4 in Λ/2Λ. We reproduce this information for the orbits of 𝑁𝑥0 on Λ/2Λ in the following table. Here we also
assign a subtype (which is a 2-digit number) to each orbit. The first digit of the subtype specifies the type of the orbit
and the second digit is used to distinguish between orbits of the same type.

Let 𝒞 be the Golay code and 𝒞* is the Golay cocode. For 𝑑 ∈ 𝒞, 𝛿 ∈ 𝒞* let 𝜆𝑑, 𝜆𝛿 ∈ Λ/2Λ be defined as in [Sey20],
Theorem 6.1. Conway’s definition of 𝜆𝑑, 𝜆𝛿 in [Con85] differs slightly from that definition. Each 𝑣 ∈ Λ/2Λ has a
unique decomposition 𝑣 = 𝜆𝑑 + 𝜆𝛿, 𝑑 ∈ 𝒞, 𝛿 ∈ 𝒞*. The subtype of a vector 𝜆𝑑 + 𝜆𝛿 ∈ Λ/2Λ can be computed from
𝑑 and 𝛿, as indicated in the following table:

Subtype Name Shape |𝑑| |𝛿| ⟨𝑑, 𝛿⟩ Remark
00 (024) 0 0 0
20 Λ4

2 (42022) 0, 24 2 0
21 Λ3

2 (3 123) any 1 |𝑑|/4
22 Λ2

2 (28016) 8, 16 even 0 1.
31 Λ5

3 (5 123) any 1 |𝑑|/4 + 1
33 Λ3

3 (33121) any 3 |𝑑|/4
34 Λ4

3 (4 28015) 8, 16 even 1
36 Λ2

3 (212012) 12 even 0
40 Λ̄4𝑎

4 (44020) 0, 24 4 0
42 Λ̄6

4 (6 27016), (21608) 8, 16 even 0 2.
43 Λ̄5

4 (5 32121), (35119) any 3 |𝑑|/4 + 1
44 Λ̄4𝑏

4 (4228014), (21608) 8, 16 even 0 3.
46 Λ̄4𝑐

4 (4 212011) 12 even 1
48 Λ̄8

4 (8 023) 24 0 0

Remarks

1. |𝛿|/2 = 1 + |𝑑|/8 (mod 2), 𝛿 ⊂ 𝑑Ω1+|𝑑|/8 for a suitable representative 𝛿 of the cocode element.

2. |𝛿|/2 = |𝑑|/8 (mod 2), 𝛿 ⊂ 𝑑Ω1+|𝑑|/8 for a suitable representative 𝛿 of the cocode element.
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3. None of the conditions stated in Remarks 1 and 2 hold.

Here column Subtype lists the two-digit number that we use for describing the orbit. Columns Name and Shape list
the names and the shapes of the orbits as given in [Iva99], Lemma 4.1.1 and 4.6.1. Columns |𝑑| and |𝛿| list conditions
on the weight of a Golay code word 𝑑 and of (a shortest representative of) the Golay cocode element 𝛿, respectively.
Column ⟨𝑑, 𝛿⟩ lists conditions on the scalar product of |𝑑| and |𝛿|. All this information can easily be derived from
[Iva99] and [Con85] (or [Sey20]).

The table provides enough information for effectively computing the subtype of an element 𝜆𝑑+𝜆𝛿 from 𝑑 and 𝛿. Func-
tion gen_leech2_type in file gen_leech.c computes that subtype. It returns e.g. the subtype 46 as the hexadecimal
number 0x46.

The following table may be helpful for memorizing the second digit of a subtype of a vector in Λ/2Λ.

Subtype Description
𝑥0 Contains a vector 𝜆𝑑 + 𝜆𝛿 with 𝑑 = 0; 𝛿 even
𝑥1 Vectors 𝜆𝑑 + 𝜆𝛿 with |𝛿| = 1

𝑥2 Vectors 𝜆𝑑 + 𝜆𝛿 with |𝑑| = 8, 16; and 𝛿 ⊂ 𝑑Ω1+|𝑑|/8, |𝛿| even
𝑥3 Vector 𝜆𝑑 + 𝜆𝛿 with |𝛿| = 3
𝑥4 Vectors 𝜆𝑑 + 𝜆𝛿 with |𝑑| = 8, 16; not of subtype 𝑥2, |𝛿| even
𝑥6 Vectors 𝜆𝑑 + 𝜆𝛿 with |𝑑| = 12; |𝛿| even
𝑥8 The vector 𝜆𝑑 + 𝜆𝛿 with |𝑑| = 24; 𝛿 = 0

Operation of the group 𝐺𝑥0 on the Leech lattice

The generators 𝑥𝑑, 𝑥𝛿, 𝑦𝑑, 𝑥𝜋, 𝜉, with 𝑑 ∈ 𝒞, 𝛿 ∈ 𝒞*, 𝜋 ∈ Aut𝑆𝑡𝒫 operate on the subgroup 𝐺𝑥0 of the monster and
also on Λ/2Λ, as described in [Sey20]. Here 𝑥𝑑, 𝑥𝛿 operate trivially on Λ/2Λ. 𝑦𝑑 and 𝑥𝜋 act as permutations and sign
changes on the coordinates of Λ, respectively; they do not change the subtype.

From the Leech graph in [Iva99], section 4.7, we see how the generators 𝜉 and 𝜉2 may change the subtype of a type-4
vector in Λ/2Λ. The following figure shows a subgraph of that graph. It shows the transitions of subtypes of type-4
vectors (due to transformations by 𝜉 or 𝜉2) that we actually use. We will provide some more information about the

43 42

40 48

46 44

Fig. 1: Transitions of subtypes of type-4 vectors in the Leech lattice mod 2

operation of 𝜉𝑘 on Λ.

We say that a vector 𝑤 ∈ Z𝑛 is of shape (𝑚𝛼0𝑛−𝛼 mod 2𝑚) if 𝑤 has 𝛼 coordinates equal to 𝑚 (mod 2𝑚) and 𝑛−𝛼
coordinates equal to 0 (mod 2𝑚). For a vector 𝑣 = (𝑣0, . . . , 𝑣23) ∈ R24 define (𝑣4𝑖, 𝑣4𝑖+1, 𝑣4𝑖+2, 𝑣4𝑖+3) ∈ R4 to be
the 𝑖-th column of 𝑣. This definition is related to the Miracle Octad Generator (MOG) used for the description of the
Golay code and the Leech lattice, see [CS99], chapter 11. The following lemma has been shown in [Sey22].

Lemma

Let 𝑣 ∈
√

8Λ, and let 𝑣(𝑘) = 𝑣 · 𝜉𝑘. Let 𝑤 be a column of 𝑣, and let 𝑤(𝑘) be the corresponding column of 𝑣(𝑘). Then
|𝑤(𝑘)| = |𝑤|. If 𝑤 has shape (𝑚4 mod 2𝑚) then there is a unique 𝑘 ∈ {1, 2} such that 𝑤(𝑘) has shape (04 mod 2𝑚).
If 𝑤 has shape (𝑚202 mod 2𝑚) then 𝑤(𝑘) has shape (𝑚202 mod 2𝑚) for all 𝑘 ∈ Z.
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Computing a transversal of 𝐺𝑥0∖𝑁𝑥0

The cosets in𝐺𝑥0∖𝑁𝑥0 correspond to the type-4 vectors in the Leech lattice modulo 2. Thus for computing a transversal
of 𝐺𝑥0∖𝑁𝑥0 we have to compute an element of 𝐺𝑥0 that maps the standard frame Ω in Λ/2Λ to a vector 𝑣 for a given
vector 𝑣 of type 4 in Λ/2Λ.

In the next few subsections we show how to map a vector of subtype 4x to a vector of subtype 48 by a sequence of genera-
tors 𝑥𝜋, 𝜉

𝑘 of length at most 6. The proofs are a bit involved, but the C function gen_leech2_reduce_type4_vector
in file gen_leech.c constructs that sequence very fast. Then the inverse of the element computed by function
gen_leech2_reduce_type4_vector is the requested element of the transversal.

If we select a permutation in the Mathieu group 𝑀24 then we actually have to select an element of the group AutSt𝒫
of standard automorphisms of the Parker loop described in Automorphisms of the Parker loop. Whenever we have to
select a permutation mapping a certain set to another set, we want to keep the inverse of the selected element of AutSt𝒫
as simple as possible. More specifically, for that inverse we select the standard representative in AutSt𝒫 of the least
feasible permutation in lexicographic order. We use the function mat24_perm_from_map in file mat24_functions.c
for finding a suitable permutation in 𝑀24.

Incorporating the baby monster into the computation of a transversal

The capability of computing in a subgroup 𝐻+ of structure 2.𝐵 of the monster M (where 𝐵 is the baby monster)
is crucial for the success of our project. Although not strictly necessary, we want to select elements of 𝐻+ in our
transversal of 𝐺𝑥0∖𝑁𝑥0 whenever possible. In this subsection we explain how to do so. This is a bit technical and may
be skipped at first reading.

Let 𝛽 = 1√
8
(𝑒2 − 𝑒3) ∈ Λ, where 𝑒𝑖 is the 𝑖-th unit vector in R24. Then 𝛽 is of type 2 in the Leech lattice Λ, and the

centralizer 𝐻+ of 𝑥𝛽 in M has structure 2.𝐵, and the centralizer 𝐻 of 𝑥𝛽 in 𝐺𝑥0 has structure 21+22.Co2. Our goal is
find a representative of a coset in 𝑁𝑥0∖𝐺𝑥0 in 𝐻 (centralizing the element 𝑥𝛽 of M) whenever possible.

The coset in 𝑁𝑥0∖𝐺𝑥0 corresponding to a vector 𝑣 ∈ Λ/2Λ of type 4 has a nonempty intersection with 𝐻 if and only
if 𝑣 + 𝛽 is of type 2 and orthogonal to 𝛽 in the real Leech lattice Λ, see [Sey22] for details.

If this is the case then we compute an element of 𝐻 ⊂ 𝐺𝑥0 that maps 𝑣 + 𝛽 to the type-2 vector Ω + 𝛽 and fixes 𝛽.

Note that the generator 𝜉 fixes 𝛽. A permutation 𝜋 ∈ 𝑀24 fixes 𝛽 if and only if it fixes the set {2, 3} of points.

From subtype 46 to subtype 44

Let 𝜆𝑟 = 𝜆𝑑 +𝜆𝛿 be of subtype 46. Then 𝑑 is a dodecad. Assume that 𝑑 contains one column of the MOG. Then up to
signs and permutation of the columns of the MOG, and up to permutation of the entries of a column, there is a vector
𝑣 ∈

√
8Λ with 𝑣/

√
8 = 𝜆𝑟 (mod 2Λ) that has MOG coordinates

2 0 2 0 0 0
2 0 2 0 0 0
2 0 4 2 2 2
2 0 0 2 2 2

.

By the Lemma given above there is a 𝑘 ∈ {1, 2} such that column 0 of the the vector 𝑤 = 𝑣 · 𝜉𝑘 has shape (4 03). The
other columns of 𝑤 have the same shape as the corresponding columns of 𝑣. Thus 𝑤 has shape (4 28015). So using the
table given above we see that 𝑤 has type 44.

Note that both, the dodecad 𝑑 and its complement, contain exactly one column of the MOG. The union of these two
columns is a grey even octad 𝑜.

With a little extra effort we can show 𝑘 = 2 − ⟨𝑜, 𝛿⟩, where ⟨., .⟩ : 𝒞 × 𝒞* → {0, 1} is the scalar product.

If dodecad 𝑑 does not contain a column of the MOG then we select a permutation that maps the first four entries of
dodecad 𝑑 to the points 0, 1, 2, 3, i.e. to the first column of the MOG. Then we proceed as above.
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From subtype 43 to subtype 42 or 44

Let 𝜆𝑟 = 𝜆𝑑 + 𝜆𝛿 be of subtype 43. Then |𝛿| = 3. The three points of 𝛿 can lie in one, two, or three different columns
of the MOG.

If all entries of 𝛿 lie in the same column of the MOG then up to signs and permutation of the columns of the MOG, and
up to permutation of the entries of a column, there is a vector 𝑣 ∈

√
8Λ with 𝑣/

√
8 = 𝜆𝑟 (mod 2Λ) that has MOG

coordinates

5 1 1 1 1 1
3 1 1 1 1 1
3 1 1 1 1 1
1 1 1 1 1 1

.

By the Lemma given above there is a 𝑘 ∈ {1, 2} such that one column of 𝑤 = 𝑣 · 𝜉𝑘 (and hence all columns) have even
entries. Column 0 of 𝑤 has squared norm 44 = 62 + 22 + 22 + 02. That decomposition of 44 into a sum of four even
squares is unique, so column 0 has shape (6 220). The other columns have shape (2 03). So 𝑤 is of shape (6 27015)
and hence of subtype 42.

With a little extra effort we can show 𝑘 = 2 − ⟨𝑑, 𝜔⟩, where 𝜔 is the standard tetrad represented by {0, 1, 2, 3}, and
⟨., .⟩ as above.

If the entries of 𝛿 lie in two different columns of the MOG then up to signs and permutations as above, the corresponding
vector in 𝑣 ∈

√
8Λ has MOG coordinates

3 5 1 1 1 1
3 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

.

By a similar argument as in the first case there is a 𝑘 ∈ {1, 2} such that the first two columns of 𝑤 = 𝑣 · 𝜉𝑘 have shape
(4 2 02) and (4 23), and that the other columns of 𝑤 have shape (2 03). Thus 𝑤 is of subtype 44.

If the entries of 𝛿 lie in three different columns of the MOG then we apply a permutation in 𝑀24 that maps 𝛿 to {1, 2, 3},
and proceed as in the first case.

From subtype 44 to subtype 40

Let 𝜆𝑟 = 𝜆𝑑 + 𝜆𝛿 be of subtype 44. Then 𝑑 is an octad or a complement of an octad. We call that octad 𝑜. If the
cocode word 𝛿 is a duad, let 𝑐0, 𝑐1 be the two points in that duad. Otherwise, let 𝑐 by any tetrad intersecting the octad
𝑜 in two points, so that 𝑐 is equal to the sextet 𝛿 modulo the cocode 𝒞*. Let 𝑐0, 𝑐1 be the two points in 𝑐 which are not
in the octad 𝑜.

Assume first that 𝑜 is a grey even octad, i.e. a union of two columns of the MOG, and that the points 𝑐0, 𝑐1 are in the
same column of the MOG.

Then up to signs and permutation of the columns of the MOG, and up to permutation of the entries of a column, there
is a vector 𝑣 ∈

√
8Λ with 𝑣/

√
8 = 𝜆𝑟 (mod 2Λ) that has MOG coordinates

2 2 4 0 0 0
2 2 4 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

Similar to the previous cases, we can show that there is a unique 𝑘 ∈ {1, 2} such that 𝑤 = 𝑣 · 𝜉𝑘 has shape (44020).
So 𝑤 is of subtype 40.
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One can show 𝑘 = 2 − 𝜎, where 𝜎 = |𝑐 ∩ 𝑤| (mod 2), 𝜎 ∈ {0, 1} , and 𝑤 is any of the two columns of the MOG
contained in the octad 𝑜.

If the octad 𝑜 and the two points 𝑐0, 𝑐1 do not satisfy the condition given above then we first construct a permutation
that maps 𝑐0, 𝑐1 to 2, 3, and four points of 𝑜 to 4, 5, 6, 7 as follows.

We compute the syndrome of the set 𝑐0, 𝑐1, 𝑜0, 𝑜1, 𝑜2. That syndrome intersects with 𝑜 in exactly one point 𝑜𝑗 . The
we construct a permutation in 𝑀24 that maps the hexad (𝑐0, 𝑐1, 𝑜0, 𝑜1, 𝑜2, 𝑜𝑗) to the hexad (2, 3, 4, 5, 6, 7). Such a
permutation exists, since both hexads are subsets of an octad.

From subtype 42 to subtype 40

Let 𝜆𝑟 = 𝜆𝑑 + 𝜆𝛿 be of subtype 42. Then 𝑑 is an octad or a complement of an octad. We call that octad 𝑜 as in the
case of type 42. If that octad is grey, we map vector 𝜆𝑟 to a vector of type 40 in the same way as in that case.

Otherwise we first map the lowest four points of octad 𝑜 to the set 0, 1, 2, 3, using a permutation in 𝑀24.

From subtype 40 to subtype 48

Let 𝜆𝑟 be of subtype 40. Then 𝜆𝑟 = 𝛼𝜆Ω + 𝜆𝛿 , 𝛼 = 0, 1, for some 𝛿 ∈ 𝒞*, |𝛿| = 4. If 𝛿 is equal to the standard tetrad
𝜔 represented by {0, 1, 2, 3} then there is a unique power of 𝜉 that maps 𝜆𝑟 to 𝜆Ω, which is of type 48.

Otherwise let 𝑐 be the tetrad containing the point 0 that corresponds to 𝛿. The we first apply a permutation in 𝑀24 that
maps 𝑐 to {0, 1, 2, 3}.

From subtype 21 to subtype 22, fixing 𝛽

Let 𝜆𝑟 = 𝜆𝑑 + 𝜆𝛿 be of subtype 21, and orthogonal to 𝛽 in the real Leech lattice. Then |𝛿| = 1.

We proceed as in the case of subtype 43. Then there is a 𝑘 ∈ {1, 2} such that one column of 𝑤 = 𝑣 · 𝜉𝑘 (and hence all
columns) have even entries. It is easy to see that 𝑤 is of subtype 22.

From subtype 22 to subtype 20, fixing 𝛽

Let 𝜆𝑟 = 𝜆𝑑+𝜆𝛿 be of subtype 22, and orthogonal to 𝛽 in the real Leech lattice. Then 𝑑 is an octad or a complement of
an octad. We call that octad 𝑜 as in the cases of subtype 42 or 44. For subtype 22 the cocode word 𝛿 can be considered
as a subset of octad 𝑜.

The set {2, 3} either contained in or disjoint to octad 𝑜.

If octad 𝑜 is grey and even then we may directly apply a power of 𝜉 that transforms 𝜆𝑟 to a vector of subtype 22, similar
to the operation in the case of subtype 42. Otherwise we proceed as follows.

If the set {2, 3} is disjoint from 𝑜 we proceed exactly as in the case of subtype 44, replacing 𝑐0 and 𝑐1 by 2 and 3. This
operation fixes the points 2 and 3.

Otherwise we first fix the points 2 and 3 and map the lowest two points of 𝑜 ∖ {2, 3} to 0 and 1, using a permutation in
𝑀24.
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From subtype 20 to the vector 𝛽 + Ω, fixing 𝛽

Let 𝜆𝑟 be of subtype 20, and orthogonal to 𝛽 in the real Leech lattice. Then 𝜆𝑟 = 𝛼𝜆Ω + 𝜆𝛿 , 𝛼 = 0, 1, for some
𝛿 ∈ 𝒞*, |𝛿| = 2. In case 𝛿 = {2, 3} we must have 𝛼 = 1, i.e. 𝜆𝑟 = 𝛽 + Ω, and we are done. Otherwise both points in
𝛿 are different from 2 and 3.

In case 𝛿 = {0, 1} the transformation 𝜉𝑘 with 𝑘 = 2 − 𝛼 maps 𝜆𝑟 to 𝛽.

Otherwise we first apply a permutation in 𝑀24 that maps 𝛿 to {0, 1}, and fixes 2 and 3.

2.3.4 Orbits of the group 𝑁𝑥0 in the group 𝑄𝑥0

Function gen_leech2_reduce_n in file gen_leech_reduce_n.c computes a standard representative of the orbit of
a nonzero vector in the extraspecial subgroup 𝑄𝑥0 of 𝐺𝑥0 under the action of the group 𝑁𝑥0. Here 𝑁𝑥0 acts on the
group 𝑄𝑥0 of structure 21+24

+ by conjugation.

The quotient of 𝑄𝑥0 by its center {𝑥±1} is isomophic to Λ/2Λ, i.e. to the Leech lattice mod 2. So we may define the
subtype of any 𝑣 ∈ 𝑄𝑥0 as the subtype of the element 𝑣𝑥±1 of Λ/2Λ.

With one exception the orbit of a nonzero vector 𝑣 ∈ 𝑄𝑥0 under 𝑁𝑥0 depends on the subtype of 𝑣 only. There are
exactly two elements 𝑥±1 of 𝑄𝑥0 of subtype 00, which are of course in different 𝑁𝑥0 orbits.

For each nonzero orbit of 𝑁𝑥0 we choose a representative 𝑥𝑑𝑥𝛿 , 𝑑 ∈ 𝒫, 𝛿 ∈ 𝒞* (depending on the subtype of the orbit)
according to the following table:

Subtype 𝑥𝑑 𝛿
00 𝑥−1 {}
20 𝑥1 {2, 3}
21 𝑥1 {0}
22 𝑥𝑜 {}
31 𝑥Ω {0}
33 𝑥Ω {1, 2, 3}
34 𝑥𝑜 {0, 8}
36 𝑥𝐷 {}
40 𝑥1 {0, 1, 2, 3}
42 𝑥Ω𝑥𝑜 {}
43 𝑥1 {1, 2, 3}
44 𝑥𝑜 {8, 9}
46 𝑥𝐷 {0, 12}
48 𝑥Ω {}

𝑥𝑜 is the (positive) element of the Parker loop corresponding to the stadard octad {0, 1, 2, 3, 4, 5, 6, 7}.

𝑥𝐷 is the (positive) element of the Parker loop corresponding to the stadard dodecad
{0, 4, 8, 13, 14, 15, 17, 18, 19, 21, 22, 23}.

This table can be computed by function gen_leech2_reduce_n_rep in file gen_leechc_reduce_n.c.
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2.3.5 Checking equality of monster elements and membership in 21+24.Co1

Checking equality of monster elements

For checking equality of two elements of the monster we may use two nonzero vectors 𝑤71 and 𝑤94 in the 198883-
dimensional representation of the monster that are fixed by an element of order 71 and negated by an element of order
94, respectively. In [LPWW98] it is shown that only the neutral element of the monster fixes both vectors, 𝑤71 and
𝑤94. So we may check if an element is the identity in the monster. Here the corresponding calculations can be done
modulo any odd prime; and we may even use different primes for the operation on 𝑤71 and on 𝑤94.

The python script mmgroup.structures.find_order_vectors.py generates suitable vectors 𝑤71 and 𝑤94 at ran-
dom and stores data for the fast recomputation of these vectors in file order_vector_data.py. Since we actually
work in the representation 𝜌 of dimension 1 + 196883, we have to make sure that the generated vectors are not fixed by
the monster.

More precisely, we generate 𝑤71 as a vector in the representation 𝜌3 of the monster in characteristic 3, and 𝑤94 as
a vector in the representation 𝜌5 of the monster in characteristic 5. We combine these two vectors to a vector in the
representation 𝜌15 (modulo 15) of the monster via Chinese remaindering. Note that a computation in 𝜌15 is faster than
the combination of the corresponding computations in 𝜌3. We write 𝑤 for the vector combined from 𝑤71 and 𝑤94.

Testing membership in 21+24.Co1

For testing membership in 21+24.Co1 we impose additional conditions on the vector𝑤71 in the representation 𝜌3 defined
in the last section.

For an odd number 𝑝 let 𝜌𝐴,𝑝 be the subspace of 𝜌𝑝 spanned by the basis vectors of 𝜌𝑝 with tag A. Then 𝜌𝐴,𝑝 is fixed by
the subgroup 𝐺𝑥0 of structure 21+24.Co1 of the monster. A vector in 𝜌𝐴,𝑝 has a natural interpretation as a symmetric
bilinear form on the Leech lattice (modulo 𝑝), see [Con85]. Let 𝑄𝑝 be the symmetric bilinear form on the Leech lattice
(modulo 𝑝) given by the scalar product; then 𝑄𝑝 is given by the the 24 × 24 unit matrix, up to a scalar factor.

Let 𝑤 be a vector in 𝜌15 as in the last section. For any 𝑤 in 𝜌𝑝, let 𝑤(𝐴,𝑝) be the bilinear from on the Leech lattice
(modulo 𝑝) corresponding to the projection of 𝑤 onto 𝜌𝐴,𝑝. We shall search for a vector 𝑤 satisfying the condition
stated an the last section. In addition we require that for some integer 𝑑 (modulo 3) the bilinear form 𝑤(𝐴,3)−𝑑 ·𝑄3 has
a kernel of dimension one, and that this kernel contains a type-4 vector 𝑥4 of the Leech lattice modulo 3.The chance
of finding such a vector 𝑤 is discussed in [Sey22], Appendix B. In average, finding a suitable vector 𝑤 take less than a
minute on the author’s compute, when running with 12 processes in parallel.

Let Ω be the standard frame of the Leech lattice (modulo 3). Then Ω is of type 4 and consists of the vectors
(0, . . . , 0,±1, 0, . . . , 0). Once we have found a suitable vector 𝑤, we apply a transformation in 𝐺𝑥0 to 𝑤 that maps the
frame in the Leech lattice given by 𝑥4 to Ω. Therefore we work in the Leech lattice modulo 2, as described in section
Computations in the Leech lattice modulo 2. Conversion from a type-4 vector in the Leech lattice mod 3 to a type-4
vector in the Leech lattice mod 2 is easy; the C function gen_leech3to2_type4 in file gen_leech3.c does that job.
In the sequel we also write 𝑤 for the transformed vector. So we may assume that the kernel of 𝑤(𝐴,3) − 𝑑 ·𝑄3 is one
dimensional and spanned by a vector in the standard frame Ω of the Leech lattice modulo 3.

For doing linear algebra in F3 we store a vector of 16 integers modulo 3 in a 64-bit integer; and we use arithmetic,
Boolean and shift operations.

Assume that 𝑔 is in 𝐺𝑥0. Then the kernel of 𝑤𝐴,3 · 𝑔− 𝑑 ·𝑄3 is spanned by a vector in the frame Ω · 𝑔. So we may also
compute Ω · 𝑔 in the Leech lattice modulo 2. Using the methods in section Computations in the Leech lattice modulo
2 we can compute a ℎ1 in 𝐺𝑥0 that maps Ω · 𝑔 to Ω. So 𝑔ℎ1 fixes Ω. Hence 𝑔ℎ1 is in the subgroup 𝑁𝑥0 of structure
21+24+11.𝑀24 of 𝐺𝑥0.

The factor group 𝑀24 of 𝑁𝑥0 acts on the 24 × 24 matrix representing the bilinear form 𝑤(𝐴,𝑝) by permuting the rows
and the columns, up to changes of signs that we will ignore at the moment. So we store the multiset of the absolute
values of the entries of each row of the matrix 𝑤(𝐴,𝑝). Then 𝑀24 permutes these 24 multisets by its natural action. So
we may recover the element of 𝑀24 performing that action and compute a preimage ℎ2 of the inverse of that element in
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𝑁𝑥0. Thus 𝑔ℎ1ℎ2 is in the subgroup 21+24+11 of 𝑁𝑥0. Note that, originally, the vector 𝑤 has been defined modulo 15,
so that almost certainly we have enough information in the matrix 𝑤(𝐴,15) to compute the permutation in 𝑀24. In the
implementation we compute a hash function on the 24 multisets obtained from the rows of 𝑤(𝐴,15), and we generate a
new vector 𝑤 if these 24 hash values are not mutually different.

Now that task of reducing an element of 21+24+11 is easy. We first eliminate the factor 211 be checking signs in 𝑤(𝐴,15),
or signs of suitable entries of vector 𝑤 with tag A, which is the same thing. Then we eliminate the factor 224 be checking
signs of suitable entries of 𝑤 with tags B, C, T, X, and, finally, the factor 21 by checking a sign of an entry with tag
Y or Z.

So we obtain a decomposition 𝑔ℎ1ℎ2ℎ3 = 1, with ℎ𝑖 in a transversal of 𝐺𝑖/𝐺𝑖+1 for 𝐺1 = 𝐺𝑥0, 𝐺2 = 𝑁𝑥0,
𝐺3 = 21+24+11, 𝐺4 = {1}. If 𝑔 /∈ 𝐺𝑥0 then this procedure fails in one of the steps mentioned above. We abort as
early as possible in case of failure, in order to accelerate functions searching for an element of 𝐺𝑥0 that have a low
probability of success.

Module mmgroup.dev.mm_reduce.find_order_vector.py contains a function for finding a suitable vector 𝑤.
Once a vector 𝑤 has been found, it creates a module mmgroup.dev.mm_reduce.order_vector_data.py con-
taining information for recomputing the same vector 𝑤 more quickly. The code generation process creates a C file
mm_order_vector.c containing the vector 𝑤 in its source code together with some data required for using 𝑤 and for
checking its correctness. We believe that this method simplifies the integration of our project into computer algebra
systems like GAP or Magma, since these systems may now simply call C functions for computing in the monster group,
without bothering how to generate a suitable vector 𝑤.

2.3.6 Subgroups of the Mathieu group 𝑀24

An amalgam of many (mostly 2-local) large subgroups of the Monster M has been constructed in [Iva09]. For each of
these subgroups (and, hopefully, also for their intersections) we want an algorithm that constructs an (almost) uniform
random element of that group. This is a complicated task, which might not even be possible for all cases. As a first step
towards this goal we will describe the intersections of some subgroups of the Mathieu group 𝑀24. These subgroups of
𝑀24 are involved in the subgroups of M in the amalgam. We will also give some information how to construct ramdom
elements of these subgroups of 𝑀24 and of their intersections.

TODO: This section is yet a fragment and will be completed in a future version.

Some subgroups of the the Mathieu group 𝑀24

We define some subgroups of the Mathieu group 𝑀24 as the stabilizers of certain subsets (or sets of subsets) of the set
Ω̃ = {0, . . . , 23}, as shown in the following table:

Name Mnemonic Stabilizes the set Structure
𝑀2 2-set {2, 3} 𝑀22 : 2
𝑀𝑜 octad {0, . . . , 7} 24 : 𝐴8

𝑀𝑡 trio {{8𝑖, . . . , 8𝑖 + 7} | 𝑖 < 3} 26 : (𝑆3 × 𝐿3(2))
𝑀𝑠 sextet {{4𝑖, . . . , 4𝑖 + 3} | 𝑖 < 6} 26 : 3.𝑆6

𝑀𝑙 (line) {{2𝑖, 2𝑖 + 1} | 4 ≤ 𝑖 < 12} 21+6 : 𝐿3(2)
𝑀3 3-set {1, 2, 3} 𝐿3(4) : 𝑆3

All these groups, except for 𝑀𝑙, are maximal subgrous of 𝑀24 and discussed in [CS99], Ch. 11. The structure of 𝑀𝑙

(as a subgoup of 𝑀𝑜) is described in [Iva09] in the text after Lemma 4.1.3. The central element of 𝑀𝑙 of order 2 is
obtained by exchanging all entries 2𝑖 with 2𝑖 + 1 for 𝑖 ≥ 4. We have the following inclusions:

𝑀𝑙 ⊂ 𝑀𝑜 , 𝑀𝑙 ∩𝑀2 ⊂ 𝑀𝑡 , 𝑀𝑡 ∩𝑀2 ⊂ 𝑀𝑜 ∩𝑀𝑙 ,
𝑀3 ∩𝑀𝑙 ⊂ 𝑀𝑠 , 𝑀3 ∩𝑀𝑡 ⊂ 𝑀𝑜 ∩𝑀𝑠 , 𝑀3 ∩𝑀𝑡 ∩𝑀𝑙 ⊂ 𝑀2 .

Membership of an element of 𝑀24 in any of these subgroups can easily be checked computationally. Thus an inclusion
of two intersections of these subgroups can be disproved computationally by finding an element of 𝑀24 contadicting
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that inclusion. This computation is done in function test_mat24_rand in module mmgroup.tests.test_mat24
during the standard test.

In the remainder of this subsection we will prove the inclusions given above. The first inclusion is obvious. Next we
justify the following two inclusions.

By [CS99], Ch. 11, the group 𝑀𝑜 acts on the octad 𝑜 = {0, . . . , 7} as the alternating group 𝐴8, and on the complement
𝑜 of 𝑜 as the affine group on F4

2. Here the affine structure of 𝑜 is given by the last 4 digits of the binary representations
of its entries. Fixing e.g. the element 8 of 𝑜, the set 𝑜 acquires the structure of the linear space F4

2; and we obtain the
well-known isomorphism 𝐿4(2) ∼= 𝐴8. Subspaces of dimension 1, 2, and 3 of the linear space F4

2 will be called lines,
planes, and hyperplanes.

We have following correspondences between 𝑜 and its complement 𝑜

Linear space 𝑜 = F4
2 Octad 𝑜 Remarks

line Steiner system 𝑆(3, 4, 8) defines an affine structure on 𝑜
plane sextet refining 𝑜 tetrads of the sextet in 𝑜 are

planes parallel to that plane
hyperplane Steiner system 𝑆(3, 4, 8) defines an affine structure on 𝑜
symplectic form set of 2 elements
line incident partition into 4
with hyperplane sets of 2 elements

These correspondences (except for the last) are stated in [CCN+85]. For the last correspondence we refer to [CS99], Ch.
10.1.4. The tetrads of a Steiner system corresponding to a line or a hyperplane are the tetrads in the sextets correspond-
ing to the planes incident with that line or hyperplane; here we take tetrads that are subsets of octad 𝑜 only. Methods
for computing with these objects are presented in [CS99], Ch. 11, and implemented in file mat24_functions.c.

Let 𝑓 be the symplectic form on F4
2 corresponding to a pair 𝑦 of elements of 𝑜. For two different nonzero elements

𝑥1, 𝑥2 of F4
2 let 𝑠 be the sextet corresponding to the plane generated by 𝑥1 and 𝑥2, and let 𝜏 be a tetrad in 𝑠 which is a

subset of 𝑜 . Then the scalar product 𝑥1 and 𝑥2 with respect to 𝑓 is the size of the set 𝑦 ∩ 𝜏 (modulo 2).

Let 𝑙′ = {8, 9}, 𝑠′ = {8, 9, 10, 11} and 𝑡′ = {8, . . . , 15}. Then the line 𝑙′, the plane 𝑠′, and the hyperplane 𝑡′ are
mutually incident. A staightforward calculation using the facts stated above shows that 𝑡′ is the orthogonal complement
of 𝑙′ with respect to the symplectic form 𝑓 ′ corresponding to the subset {2, 3} of 𝑜. Obviously, 𝑀𝑡 ∩𝑀2𝑠𝑢𝑏𝑠𝑒𝑡𝑀𝑜.
So this proves 𝑀𝑙 ∩𝑀2 ⊂ 𝑀𝑡 and 𝑀𝑡 ∩𝑀2 ⊂ 𝑀𝑜 ∩𝑀𝑙.

Next we will show the last three inclusions listed above. The group 𝑀3 fixes the set 𝑦 = {1, 2, 3}. We have 𝑀3∩𝑀𝑙 ⊂
𝑀𝑜, so 𝑀3 ∩𝑀𝑙 fixes a Steiner system in 𝑜, an it turns out the the set {0, 1, 2, 3} ⊃ 𝑦 is in that Steiner system. This
proves 𝑀3 ∩𝑀𝑙 ⊂ 𝑀𝑠. We obviously have 𝑀3 ∩𝑀𝑡 ⊂ 𝑀𝑜, and hence 𝑀3 ∩𝑀𝑡 fixes another Steiner system in 𝑜.
Here the set {0, 1, 2, 3} is also in this Steiner system, implying 𝑀3 ∩𝑀𝑡 ⊂ 𝑀𝑜 ∩𝑀𝑠.

The group 𝑀𝑡 ∩ 𝑀𝑙 fixes a line incident with a hyperplane in F4
2. Hence it fixes a partition of 𝑜 into four unordered

pairs, and it turns out that the set 𝑢 of these pairs is {{2𝑖, 2𝑖 + 1} | 0 ≤ 𝑖 < 4}. Thus 𝑀3 ∩𝑀𝑡 ∩𝑀𝑙 fixes 𝑢 and 𝑦,
and hence also the set {2, 3}. This proves 𝑀3 ∩𝑀𝑡 ∩𝑀𝑙 ⊂ 𝑀2.

Some 2-local subgroups of the Monster

The subgroups of 𝑀24 constructed above are involved in some large subgrups of the Monster as described in the
following table.

Name Involved in subgroup ofM
𝑀2 𝐻+ = 2.B
𝑀𝑜 𝐺10 = 210+16.𝑂+

10(2)

𝑀𝑡 𝐺
(𝑡)
5 = 25+10+20.(𝑆3 × 𝐿5(2))

𝑀𝑠 𝐺3 = 23+6+12+18.(𝐿3(2) × 𝐿3(2))
𝑀3 22.2𝐸6(2) : 𝑆3

TODO: More details will be given in a future version.
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2.4 Installation from a source distribution

The current version of the mmgroup package is a source distribution that has been tested on a bit Windows, Linux and
macOS with a 64-bit x86 CPU. It runs with python 3.8 or higher. The sources of the project can be downloaded from

https://github.com/Martin-Seysen/mmgroup .

We use the python package cibuildwheel to build several wheels on these operating systems. The GitHub repository
of the project contains actions to build the corrsponding python wheels. The program code for the GitHub actions
is stored in subdirectory .github/workflows. More details about the build process are given in section The build
process.

The mmmgroup package contains a number of extensions written in C which have to be built before use. This will be
discussed in section Code generation.

2.4.1 Building the mmgroup package with cibuildwheel

The easiest way to build the mmgroup package is to clone the sources from the github repository with git, and to build a
python wheel with cibuildwheel. Therefore, the cibuildwheel tool must support your target platform. In the sequel we
assume that python and the git revision control system are installed on your platform. We describe the build process
on a unix-like platform.

Depending on your platform, you might have to install additional tools. For details we refer to the cibuildwheel doc-
mentation https://cibuildwheel.readthedocs.io/en/stable/

Any previously installed version of the mmgroup package must be uninstalled before building a new version of that
package!

The current build system supports native compilation only. Cross compilation is not supported.

E.g. for building the mmgroup package for python 3.12 on Linux with a 64-bit x86 CPU, open a shell and type:

pip3 install cibuildwheel
git clone https://github.com/Martin-Seysen/mmgroup
cd mmgroup
git pull origin master
git checkout .
python3 -m cibuildwheel --output-dir wheelhouse --only cp312-manylinux_x86_64

The last command builds the python wheel. For building the wheel on a different platform, the argument ‘cp312-
manylinux_x86_64’ in the last command should be replaced by a build identifier that describes the requested python
version and target platform. A list of valid build identifiers is given in Section ‘Options/build selection’ of the cibuild-
wheel documentation, see

https://cibuildwheel.readthedocs.io/en/stable/options/#build-skip

After building the python wheel, switch to subdirectory wheelhouse, and check the file name of the wheel that has been
built:

cd wheelhouse
ls

Then you may install the wheel with pip, e.g.:

pip3 install mmgroup-0.0.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
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Here the file name after the pip3 install command must be changed to the file name of the wheel just generated.

You should test your installation of the mmgroup package before using it:

pip3 install pytest
python3 -m pytest --pyargs mmgroup -m "not slow"

2.4.2 Dependencies

Before you can use this source distribution or build its extensions you should install the following python packages:

Table 2: External Python packages required

Package Purpose
cython Development: integrating C programs into the mmgroup package
numpy Runtime: Most arrays used by the mmgroup package are numpy arrays
wheel Distribution: package for generating a Python wheel
pytest Testing: basic package used for testing
regex Development: parsing balanced curly braces
setuptools Development: basic package used for setup and building extensions
cibuildwheel Development: build wheel in continuous integration process
auditwheel Development (Linux and macOS only): patching shared libraries
sphinx Documentation: basic package used for documentation
sphinx-rtd-theme Documentation: ‘theme’ to be used by sphinx
sphinxcontrib-bibtex Documentation: bibliography in BibTeX style
sphinxcontrib-tikz Documentation: link between doxygen and sphinx
breathe Documentation: link between TikZ and sphinx

Packages used for the purpose of documentation are required only if you want to rebuild the documentation. If you
want to rebuild the documentation you should also install the following programs:

Table 3: External programs required

Program Purpose Location
miktex Documentation https://miktex.org/
Perl Documentation https://www.perl.org/get.html
doxygen Documentation of C files https://www.doxygen.nl/download.html
Ghostcript Documentation: using TikZ in

Sphinx
https://ghostscript.com/releases/gsdnld.html

2.4.3 Installing the package

To build the required package on your local computer, go to the root directory of the distribution. This is the directory
containing the files setup.py and README.rst. From there run the following commands in a shell:

python -m pip install -r requirements.txt
python setup.py bdist_wheel

In Linux or macOS you’ll have to change the python command to python3.

For testing the installation, run the following command:
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python -m pytest ./src/mmgroup/ -Wignore -v -s -m "not slow"

Distributing a wheel is the standard way to distribute a python package, see e.g.

https://packaging.python.org/guides/distributing-packages-using-setuptools/#wheels

Remarks

If you have installed any version of the mmgroup package (e.g. with the pip tool) then you must uninstall that package
before you can build a new version of the mmgroup package from the source files.

2.4.4 Installing a C compiler for cython in Windows

The bad news for Windows developers is that there is no pre-installed C compiler on a standard Windows system.
However, the cython package requires the C compiler MSVC.

The user has to install a C compiler so that it cooperates with cython. That installation process is out of the scope of
this document.

For installing MSVC, one might start looking at https://wiki.python.org/moin/WindowsCompilers

The author has installed the MSVC compiler with the Microsoft Build Tools for Visual Studio from:

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16 ,

following the instructions in

https://www.scivision.dev/python-windows-visual-c-14-required/ .

Before typing python setup.py bdist_wheel in a Windows command line the author had to type:

"C:\Program Files (x86)\Microsoft Visual Studio\2019\BuildTools\VC\Auxiliary\Build\
→˓vcvars64.bat"

Here the path my be different on the user’s Windows system.

2.5 The build process

Warning! At present the build process is under construction.

We plan to switch to the Meson build system. The reason for this is that invoking setup.py from the command line
is deprecated. Meson requires a much more declarative style for describing the build operations. Thus the description
here is pretty much outdated!

The standard build process for python packages is based on the setuptools package. We use setuptools to build
the mmgroup package. We have added the following functionality to the standard build process:

• The user may call arbitrary functions or processes, e.g. for the automatic generation of C code.

• The user may add a shared library that may be used by several extensions.

Module build_ext_steps in the root directory contains the python classes required for that extension. The following
table lists some important modules in the root directory.
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Table 4: Files in the root directory used by the build process

File name Purpose
build_ext_steps.py Extension for the setuptools package
build_shared.py Tool for building a shared library
cleanup.py Clean up intermediate files
config.py A configuration file of the project
generate_code.py Tool for generating C code
MANIFEST.in List of files to be added to the source distribution
pyproject.toml Main configuration file for the project
README.rst Main documentation file for GitHub
setup.py Main file for the build process with setuptools

2.5.1 The tool build_shared.py

The tool build_shared.py is a simple stand-alone tool for generating a shared library with a standard C compiler. It
supports Windows, Linux and macOS. This job could also be done with a tool like CMake or Meson; but for the time
being it has been easier to extract this functionality from an older tool with a similar functionality.

Here are the options of the tool build_shared.py:

-h, --help show this help message and exit
--name MAME Set NAME of library to be generated. NAME should

have no extension and no prefix such as 'lib'.
--sources [SOURCES ...]

Add list SOURCES of to list of source files. Each
source file should be a .c file with extension '.c'.

--source-dir DIR Set root directory DIR for all source files.
--include-path [PATHS ...]

Set list of PATHS for finding .h files to be used.
--library-path [PATHS ...]

Set list of PATHS for finding libraries to be used.
--define [VARS ...] Define variables given by the list VARS for the

compiler. Each variable must be a string VAR or
VAR=VALUE.

--undef [VARS ...] Undefine variables given by the list VARS for the
compiler.

--libraries [LIBS ...]
Search libraries with names in the list given by
LIBS. This corresponds to the gcc option '-l'.

--library-dir DIR Set directory DIR for storing object files and
static libraries.

--shared-dir DIR Set directory DIR for storing shared libraries.
--static [STATIC] Create static instead of shared library. Optional

argument STATIC may be 0 (=shared) or 1 (=static).
--n N Use N parallel processes for compiling.
--compiler C Specify name of default compiler. C must be 'unix',

'msvc', or 'mingw32'.
--cflags FLAGS Add extra arguments FLAGS for the compiler. E.g.

'--cflags=-c,foo=bar' adds arguments '-c' and
'foo=bar'.

--display MODE display (full) name of generated library and exit.
(continues on next page)
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(continued from previous page)

MODE = 'load' displays the full file name of the
library. MODE = 'build' displays the name of the
library to be linked to a program using that
library.

2.5.2 Creating a new version

The ultimate goal of building a new version is to upload a new python version to the pypi server.

At present we will upload a source distribution and python 3 wheels for 64-bit Windows, Linux and macOS, say, for
the latest two or three python versions.

Before creating a new version, (at least) the following test should be executed in a shell in Windows 64, and also in
some Linux version:

pytest src/mmgroup/ -v -s -m "very_slow"

Version numbering

We assume that we want to create Version 0.0.8 at date 2022-07-12, with the short version description ‘Performance
improved’.

You should update the version number in file setup.py by writing e.g:

VERSION = '0.0.8' # 2022-07-12. Performance improved

into that file. You should also comment out older version descriptions in that file. In section Version history of file
docs/source/api.rst you should add the following line to the version history:

| Version 0.0.8, 2022-07-12. Performance improved

Then you should upload the new version with these changes to the master branch in the github repository:

https://github.com/Martin-Seysen/mmgroup

After uploading, you should create a new release in the github repository. Therefore, click Create a new release in
main page of the github repository. Here you should write the tag v0.0.8 into the field Choose a tag. The Target of
the release should be master, referring to the master branch in git. You should enter the title mmgroup v0.0.8 into the
field Release title. We recommend to enter (at least) the version description (which is ‘Performance improved’ in our
case) into the field Describe this release. Finally, you should click the button Publish release in the github window.

Generating the wheels

This subsection describes how to create wheels manually. This process has now been automated to some extent by
using GitHub actions that trigger the python tool cibuildwheel. So the reader may skip this section.

Here you must generate a wheel for each python version, and also for each operating system that you want to support.
Here we assume that Anaconda is used for creating wheels for Windows 64 for various python versions. An Anaconda
environment e.g for python 3.9 is created by typing the following command

conda create --name python39 python = 3.9

Then we may switch to that python version by typing:
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conda activate python39

Environments for other python versions are created similarly. One has to install all required python packages for each
version. For uploading a version to pypi we also have to install twine with

pip install twine

In each version to be supported we have to type:

python setup.py build_ext bdist_wheel
python setup.py sdist

Here the first line creates the wheel for the selected python version. Before doing so in Windows, you must install a C
compiler for cython as described in section Installation from a source distribution.

The second line creates a source distribution; this must be done only once. The wheels and source distributions are
stored in subdirectory dist. The wheel for mmgroup version 0.0.8 for python 3.9 has a name similar to mmgroup-0.
0.9-cp37-cp37m-win_amd64.whl; and the source distribution has a name like mmgroup-0.0.8.zip.

Uploading the version to pypi

You may upload the new version with the following commend:

twine upload twine upload dist/*

This uploads all files from subdirectory dist to pypi. So you’d better cleanup that directory before uploading.

Warning: Uploading with twine is irreversible. If your uploaded version is buggy, you will have to create a new
version!

2.5.3 Description of module build_ext_steps.py

Module build_ext_steps provides a customized version of the ‘build_ext’ command for setup.py.

It should be placed in the same directory as the module setup.py.

Distributing python packages

The standard toolkit for distributing python packages is the setuptools package. Here the user types:

python setup.py build_ext

at the console for building the extensions to the python package, which are typically written in a language like C or
C++ for the sake of speed. We may use e.g. the Cython package to write python wrappers for the functions written in
C or C++. The setuptools package supports the integration of Cython extensions.

The setup.py script describes a list of extensions, where each extension is an instance of class Extension which is
provided by setuptools. Then it calls the setup function which builds all these extensions:
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from setuptools import setup
from setuptools.extension import Extension

ext_modules = [
Extension(

... # description of first extension
),
Extension(

... # description of second extension
),
...

]

setup(
..., # Standard arguments for the setup function
ext_modules = ext_modules, # List of extensions to be built

)

We assume that the reader is familiar with the standard python setup process. For background, we refer to

https://setuptools.readthedocs.io/en/latest/

Added functionality for building python packages

This build_ext_steps module supports a new paradigm for building a python extension:

• A python program make_stage1.py creates a C program stage1.c.

• We create a python extension stage1.so (or stage1.pyd in Windows) that makes the functionality of stage1.
c available in python.

• A python program make_stage2.py creates a C program stage2.c. Here make_stage2.py may import
stage1.so (or stage1.pyd).

• We create a python extension that makes the functionality of stage2.c available in python.

• etc.

This paradigm is not supported by the setuptools package.

Using class BuildExtCmd for the new paradigm

For using the new building paradigm we have to replace the standard class build_ext by the class build_ext_steps.
BuildExtCmd.

from setuptools import setup
from build_ext_steps import Extension
from build_ext_steps import BuildExtCmd

ext_modules = [
# description of extension as above

]

setup(
..., # Standard arguments for the setup function

(continues on next page)
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ext_modules = ext_modules, # List of extensions to be built
cmdclass={
'build_ext': BuildExtCmd, # replace class for build_ext

},
)

This change has a few consequences:

• It is guaranteed that the extension are build in the given order

• Extensions are always build in place (option build_ext --inplace) (The current version does not support
building the extension in a special build directory.)

• The building of all extensions is now forced (option build_ext --f), regardless of any time stamps.

Apart from these changes, an extension is created in the same way as with setuptools.

For a documentation of the Extension class in the setuptools package, see

https://docs.python.org/3/distutils/apiref.html?highlight=extension#distutils.core.Extension

Inserting user-defined functions into the build process

Module build_ext_steps provides a class CustomBuildStep for adding user-defined functions to the build process.

In the list ext_modules of extensions, instances of class CustomBuildStep may be mixed with instances of class
Extension, Class CustomBuildStep models an arbitrary sequence of functions to be executed.

The constructor for that class takes a string ‘name’ describing the action of these functions, followed by an arbitrary
number of lists, where each list describes a function to be executed.

Here the first entry should be a string. Then a subprocess with that name is called. Subsequent entries in the list are
arguments passed to the subprocess.

If such an argument contains the string ‘${build_lib}’ then that string is replaced by the name of the root directory of
the path where the extionsion is to be built. If the ‘build_ext’ command of setup.py is invoked with the ‘–inplace’
option then the string ‘${build_lib}’ is replaced by ‘null’.

Such a subprocess may be e.g. a step that generates C code to be used for building a subsequent python extension.

Its recommended to use the string sys.executable (provided by the sys package) instead of the string 'python'
for starting a python subprocess.

The following functionality is deprecated:

If the first entry of a list as descibed above is a python function then that function is called. Subsequent entries in the
list are passed as arguments to the function.

Using a shared library in an extension

The user may have to perform some os-specific steps for making the library available for python extension. Details are
out of the scope of this documentation.
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Using an extension in a subsequent build step

Once a python extension has been built, it can also be used in a subsequent step of the build process, e.g. for calculating
large arrays of constants for C programs. Details are out of the scope of this documentation..

2.6 Code generation

Warning! At present the code generation process is under construction.

We plan to switch to the Meson build system. Therefore a much more declarative style is required for describing the
code generation. Also, a strict separation between input and output directories is required. Thus the description here
is pretty much outdated!

2.6.1 The main code generation tool generate_code.py

An invocation of the main code generation script generate_code.py generates a set of .c files and also a single .h file
from a set of source files. Here each .c file is generated from a single source file which has extension .ske. Prototypes
for the functions in the .c files may also be generated form these source files; they are copied into the generated .h file.
The user may also specify a source file with an extension .h. Such a .h file usually contains global declarations; and it
is also copied into the generated .h file.

The user may also specifiy a set of python modules to be used for code generation with the --tables option. Any such
module must have a class Tables containing information how to enter tables and code snippets into the generated C
code. The structure of such a code-generating module is described in the next section.

We use the Cython language to integrate the generated .c file into our python project. In a Cython project, a .pxd file
should be generated from a header file. Here the .pxd file contains essentially the same information as the header file.
The --pxd option generates a .pxd file from the generated header file automatically. Here the user may specify a source
file (with extension .pxd), which will also be copied into the generated .pxd file.

The user may also create a .pxi file from the .pxd file with the --pxi option . Such a .pxi file will contains wrappers
for the C functions declared in the .pxi file. These wrappers can be used directly from python by including the .pxi file
into a .pyx file that defines a Cython extension. Note that this automatic wrappping mechanism works for rather simple
prototypes only.

With the --pyx option, the user may simply copy a .pyx file from the source path to a destination directory.

The Meson build system requires strict separation between the input and the output directory. The user may specify a
path where to look for the input files (with extensions .ske, .h, .pxd, and .pyx). The user may specify a directory where
to store the generated .c and .h files; and also a directory where to store the generated .pxd, .pyi, and .pyx files.

In the following table we list the options available in the generate_code.py tool.

-h, --help show this help message and exit
--sources [SOURCE ...]

List of SOURCE files to be generated. For each
SOURCE with extension '.c' a '.c' file is
generated from a file with the same name and
extension '.ske'. A SOURCE with extension '.h' is
copied into the common header file. Each SOURCE
is seached in the path set by parameter '--
source-path'. Output is written to the directory
set by parameter '--out-dir'.

--out-header HEADER Set name of output header file to HEADER. By
(continues on next page)
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default we take the first file with extension .h
in the list given in the argument '--sources'.

--pxd PXD Set input '.pxd' file PXD for generating '.pxd'
file with same name from that input file and from
the generated header.

--pxi Generate '.pxi' file from '.pxd' file if this
option is set.

--pyx PYX Copy input '.pyx' file PYX from source path to
output directory.

--tables [TABLES ...]
Add list TABLES of table classes to the tables to
be used for code generation.

--set VAR=VALUE [VAR=VALUE ...]
Set variable VAR to value VALUE. When generating
code with subsequent '--sources' options then the
table classes will set VAR=VALUE.

--subst [PATTERN SUBSTITUTION ...]
Map the name of a '.c' or '.h' file to be
generated to the name of a file used as a source
for the generation process. Example: "--subst
mm(?P<p>[0-9]+)_op mm_op" maps e.g.'mm3_op' to
'mm_op'. We substitute PATTERN in the name of a
generated file by SUBSTITUTION for obtaining the
name of that source. The part "(?P<p>[0-9]+)"
creates a variable 'p' that takes the decimal
string following the intial letters 'mm' in the
file name. Then variable 'p' will be passed to
the table classes used for code generation.
PATTERN must be given in python regular
expression syntax.

--source-path [PATHS ...]
Set list of PATHS for finding source files to be
used for generation process.

--py-path [PATHS ...]
Set list of PATHS for finding python scripts

--out-dir DIR Store output files with extensions .c and .h in
directory DIR.

--out-pxd-dir DIR Store output files with extensions .pxd, .pxi,
and .pyx in directory DIR.

--dll DLL_NAME Generate code for exporting C functions to a DLL
or to a shared library with name DLL_NAME.
Parameter DLL_NAME must be the same for all
generated C files to be placed into the same DLL.
This parameter is not used for any other
purposes.

--nogil Optional, declare functions from .pxi file as
'nogil' when set.

--mockup Use tables and directives for Sphinx mockup if
present

-v, --verbose Verbose operation
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2.6.2 Python modules used for code generation

In the main code generation tool generate_code.py the user may specify a list of python modules to be used for code
generation. Any such module must have a class Tables that contains two dictionaries tables and directives to be
used for code generation. Both of these dictionaries map identifiers to objects implementing tables or directives to be
used in the code generation process. Here the identifiers should be valid python identifiers beginning with an alphabetic
character. If several code generation modules are specified then the corresponding dictionaries in the Tables classes
of these modules are merged into a single dictionary.

Dictionary tables maps identifiers to values. If we have e.g. tables[P] = 3 then the expression %{P} in a source
file with extension .ske evaluates to the string 3 in the generated .c file. More elaborated use cases for the tables
dictionary are given in the following sections. A value in the tables dictionary may also be a list of integers; then
there ia a way to to initialize an array of integers in the generated .c files with these integer values.

Dictionary directives maps identifiers to directives. Invoking such a directive in a source file causes the code
generator to put a code snippet into the generated .c file. Here a typical use case is the multiplication of a part of a
vector of the representation of the Monster group with a fixed matrix.

A class Tables as described above should accept arbitrary keyword arguments in the constructor. (A standard way
to do this is to provide a parameter **kwds in the constructor.) The generate_code.py tool may pass such keyword
arguments to the constructor of a class Tables either with the --set option or with the --subst option. Using the
--set option is straightforward. Using --subst is a bit more involved. The following paragraph provides an example
for using the --subst option.

The source file mm_op_pi.ske supports certain oparations of the Monster group on vectors modulo several small odd
numbers p. The module mm_op_pi.py provides a class Tables that supports the generation of code snippets to be used
in these operations. From the source file mm_op_word.ske we want to generate files mm3_op_pi.c, mm7_op_pi.c,
. . . etc. for the operation modulo 3, 7, . . . , etc. In the corresponding code generation process there is an option

--subst mm(?P<p>[0-9]+)_op mm_op

that primarily describes a subtitution of strings that maps both, mm3_op_pi, and mm7_op_pi to mm_op_pi. So this
substitution maps the name of a generated .c file to the name of a .ske file (without extension) from which that .c file is
to be generated. The first argument mm(?P<p>[0-9]+)_op of the --subst option is the pattern to be substituted given
in the standard python regular expression syntax. Note that the part (?P<p>[0-9]+) of that argument also creates a
dictionary {'p' : '3'} mapping identifier ‘p’ to the string ‘3’, when we substitute the name mm3_op_pi using this
pattern. When such a dictionary is created, the code generation tool passes the keyword argument p = '3' to the
constructor of every class Tables used for the generation of file mm3_op_pi.c. This way the the Tables classes can
be instructed to generate code snippets for operation modulo 3.

2.6.3 Generation of code snippets and tables

In this section we describe the most important functions and classes used for the automatic generation of C code.

The C code generator generates code from a source file automatically.

Class TableGenerator can be used to generate a .c and a .h file from source file. Here such a source file usually has
the extension .ske.

Basic idea: We copy a source file to the .c file. The source contains directives to enter precomputed tables, code
snippets or constants into the .c file, and prototypes into the .h file.

We copy the content of the source file directly to the .c file. In the source file we also parse certain directives and we
replace them by automatically generated code snippets in the .c file and in the .h file.

The arguments given to the constructor of class TableGenerator specify the meaning of the directives.
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Overview

In the source file we parse directives of the shape:

// %%<keyword> <arg1>, <arg2>, ...

Each directive executes certain function associated to the <keyword>. There are built-in and user-defined directives.
Built-in directives are listed in section Built in directives. User-defined directives are passed to the constructor in a
dictionary directives with entries:

<keyword> : <directive_function>.

If a directive is found in the source file we call:

<directive_function>(*<all evaluated arguments>),

and the string returned by that function is merged into the generated .c file. The arguments of a directive must be given
in python syntax and they are evaluated to python objects using some safe version of the python eval() function.
Basically, python identifiers in an argument are evaluated as follows:

In the constructor, parameter tables is a dictionary of local variables, which will be passed to the python eval()
function for evaluating an argument. See section Arguments of directives for a more detailed description of this process.

You may also consider class UserDirective for constructing specific directive functions.

Arguments of directives

The comma-separated list of arguments of a built-in or user-defined directive or function must be a valid python ex-
pression. This expression is evaluated by a safe version of the python eval() function, with the local variables given
by the dictionary names. Here names is an updated version of the dictionary tables of local variables passed in the
constructor of this class as described below. This means that each identifier found in the list of arguments is looked up
in that dictionary, and that the identifier is evaluated to the corresponding value in that dictionary.

The dynamic dictionary names is initialized with dictionary tables. It may be updated with the names of the tables
generated by the built-in directive TABLE, as indicated in the description of the built-in directive USE_TABLE.

There are a few more predefined entries in dictionary names:

name value
TABLES The original dictionary tables passed in the constructor
NAMES updated version of dictionary tables as described above

Evaluating a python expression with the standard function eval() is known to be unsafe. For evaluating arguments
we use a modified version of the eval() function. That modified function does not allow assignment, and identi-
fiers starting with an underscore _ are illegal. See function EvalNodeVisitor in module mmgroup.generate_c.
generate_functions. for details.

There is a limited number of built-in python functions (specified in directory safe_locals in the same module) that
are legal in python expressions for arguments:

abs, int, len, max, min, str, pow, range, zip

An example with user-defined directives is given in class testcode.TestGen. We recommend to follow the conven-
tions in that class for passing user-defined directives to an instance of class TableGenerator.
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Built-in directives

•COMMENT, deprecated!
Indicates that a comment follows. This should be used only for comments relevant for the user, not for
internal details. No action in this class, but other functions may use this directive for generating user
documentation.

•ELSE [IF]? <expression>
else clause for IF directive, see IF

•END <directive>
Closes a block that has been started by one of the directives FOR or IF. A FOR block must be closed with
END FOR, an IF block must be closed with END IF, etc.

•ERROR <message>
TODO: yet to be implemented and documented!!!!

•EXPORT (arguments see below)
Then the following line with an appended semicolon is copied into the generated .h file. This is useful for
creating prototypes. The EXPORT directive may precede a line with a USE_TABLE directive. Then the table
name captured by the next USE_TABLE statement is exported to the generated .h file. The EXPORT directive
may precede a line with a DEFINE function. Then the #define statement generated by the next DEFINE
function is written to the generated .h file.

An optional argument p means that the exported line will also be included in a .pxd file, see method
generate_pxd().

An optional argument px or xp means that the same as argument p. Then in addition we also write a com-
ment # PYX <wrap pxi> into the .pxd file generated by method generate_pxd(). If function mmgroup.
generate_c.pxd_to_pyx reads such a comment in a .pxd file, it will write a simple wrapper for the
exported function into a .pyx file.

•EXPORT_KWD <keyword>
The directive:

// %% EXPORT_KWD FOO_API

places the keyword FOO_API before any function or variable which is exported with the EXPORT or
EXPORT_TABLE directive. This is useful on a MS Windows system for creating a dll. Then the header
should contain a definition similar to:

#define FOO_API __declspec(dllexport)

This declares these functions or variables to be exported by the dll. For background, see e.g. https://gcc.
gnu.org/wiki/Visibility.

•EXPORT_TABLE (no arguments)
Parses the next input line for the C-name of a table, and exports this name into the generate .h header file.
This is equivalent to two subsequent directives:

EXPORT
USE_TABLE

There are, however, subtle differences, see directive EXPORT_KWD.

•FOR <variable> in <parameter_list>
Generate a sequence of blocks of statements, one block for each parameter in the parameter_list. A sequence
of arbitrary lines follows, terminated by an END FOR directive. The parameter list is evaluated to a python
object which should be iterable.
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Nesting of FOR and similar directives is possible.

Examples:

// %%FOR x in range(1,3)
i%{x} += 2*%{x};
// %%END FOR

evaluates to:

i1 += 2*1;
i2 += 2*2;

•GEN <ch>
Directs output to .c or to .h file or to both, depending on whether the letter c or h is present in the first
argument.

•IF <expression>
Conditional code generation depending on the boolean value of <expression>. Syntax is:

// %%IF <expression>
<statements>
// %%ELSE IF <expression>
<statements>
// %%ELSE
<statements>
// %%END IF

with one or more optional ELSE IF clauses and at most one final ELSE clause. Nested IF and FOR blocks
are possible.

• INCLUDE_HEADERS

This directive is legal in a header file with extension .h only. A typical header file may look like this:

#ifndef _THIS_HAEDER_HAS_ALREADY_BEEN_PROCESSED_
#define _THIS_HAEDER_HAS_ALREADY_BEEN_PROCESSED_

// Some prototypes for C functions will be inserted here

#endif

The code generator may insert automatically generated prototypes for C functions into that header. You can tell
the code generator where to insert these prototypes as follows:

#ifndef _THIS_HAEDER_HAS_ALREADY_BEEN_PROCESSED_
#define _THIS_HAEDER_HAS_ALREADY_BEEN_PROCESSED_

// %%INCLUDE_HEADERS

#endif

•JOIN <infix>, <suffix>
A FOR directive must follow a JOIN directive. The expressions generated by the following FOR directive are
joined with the <infix> (which is usually an operator), and the <suffix> is appended to the whole generated
expression. E.g.:
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a +=
// %%JOIN* " +", ";"
// %%FOR* i in range(1,4)
%{int:2*i} * table[%{i}]

// %%END FOR

evaluates to:

a +=
2 * table[1] +
4 * table[2] +
6 * table[3];

•PY_DOCSTR <string>, <format>
This directive is no longer supported

•PYX <string>

This directive is no longer supported

into the .pxd file, when generating a .pxd file. This has no effect on the generated .c or .h file. It may be
used for automatically generating a .pyx file from a .pxd file.

•TABLE <table>, <format>
Enters all entries of the python array <table> into the C code as an array of constants with an optional
<format>. Only the data of the array are written. Feasible <format> strings are given in function for-
mat_number().

•USE_TABLE (no arguments)
Parses the next input line for the C-name of a table and makes that C name available for user-defined
directives.

If a table is coded with the TABLE directive and preceded by a USE_TABLE or EXPORT_TABLE directive then
the name of that table will be added to the dictionary names. The key with the python name of that table
will have the C name of that table as its value.

Consider the following example:

1: // %%USE_TABLE
2: int C_table[] = {
3: // %%TABLE python_table, uint32
4: }

Here 'python_table' must be a key in the dictionary tables passed to the constructor of class
TableGenerator. The value for that key should be a list of 32-bit integers. Then the directive in line
3 creates the list of integer constants given by the list tables[python_table].

The USE_TABLE directive in line 1 has the following effect. In the sequel the entry
names['python_table'] has the value 'C_table', which is the C name of the table that has
been generated. So we may use that entry in subsequent directives or via string formatting with curly
braces.

The entries of table python_table are still available in the form python_table[i] as before.
python_table[:] evaluates to the whole table as before.

•WITH <variable> = <value>
Temporarily assign <value> to <variable>. A sequence of arbitrary lines follows, terminated by an END
WITH directive. Both, <variable> and <value>, may be tuples of equal length; a nested tuple <variable>
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is illegal. The <variable>, or the variables contained in the tuple <variable>, are temporarily added to the
dictionary names as keys, to that they can be used via string formatting.

Nesting of WITH and other directives is possible.

Example:

// %WITH square, cube = int((x+1)**2), int((x+1)**3)
i += %{cube} + %{square} + %{x};
// %%END WITH

Assuming x has value 9, this evaluates to:

i += 1000 + 100 + 9;

String formatting

A line l in the source file may contain a string s with balanced curly braces and preceded by a ‘%’ character. Then the
standard .format()method is applied to the string s[1:] obtained from s by dropping the initial ‘%’ character. The
dictionary names is given to the formatting method as given as the list of keyword arguments.

E.g. in case names['x'] = y, the expressions %{x.z} and %{x[z]} refer to y.z and y[z]. Of course, the objects
y.z or y[z] must exist and evaluate to strings which are meaningful in the generated C file.

For formatting, the dictionary names is an updated version of the dictionary tables passed in the constructor, as
described in section Arguments of directives.

We consider this to be a reasonable compromise between the standard C syntax and the very powerful pythonic .format
method for strings.

Using functions via string formatting

User-defined functions can be invoked inside C code via the the string formatting operator %{function_name:arg1,
arg2,...}. Then the function with name function_name is called with the given arguments, and the result of the
function is substituted in the C code.

Such a user-defined function may be created with class UserFormat. The simplest way to create such a user-defined
function from a function f is to create an entry:

"function_name" : UserFormat(f)

in the dictionary tables passed to the constructor. Then %{function_name:arg1,arg2,...} evaluates to
str(f(arg1,arg2,...)). Here arguments arg1, arg2 must be given in python syntax and they are processed
in the same way as the arguments of a directive described in section Arguments of directives. Then you may also write
function_name(arg1,..) inside an argument of a directive or a user-defined function; this expression evaluates to
f(arg1,...).

Class UserFormat also contains options to control the conversion of the result of function f to a string.

There are a few built-in string formatting functions, as given by dictionary built_in_formats in module
generate_functions.

There are a few predefined functions for string formatting:

• %{int:x} returns x as a decimal integer

• %{hex:x} returns x as a hexadecimal integer

• %{len:l} returns length of list l as a decimal int
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• %{str:x} returns str(x)

• %{join:s,l} returns s.join(l) for string s and list l

See dictionary built_in_formats in module mmgroup.generate_c.generate_functions for details.

So, assuming that keys 'a' and 'b' have values 1 and 10 in the dictionary tables passed to the code generator, we
may write e.g.:

y%{a} += %{int:3*b+1};

in the source file. This evaluates to:

y1 += 31;

Quiet form of a directive

For directives such as IF, FOR, . . . there are also quiet variants IF*, FOR*, . . . , which perform the same operations, but
without writing any any comments about the directive into the output file. E.g. in:

// %%FOR i in range(50)
printf("%d\n", i);
// %%IF* i % 7 == 0 or i % 10 == 7
printf("seven\n");
// %%END IF
// %%END FOR

you probably do not want any messy comments about the IF directive in your generated code.

Historical remark

In versions up to 0.4 string formatting operator was {xxx} instead of %{xxx}. This had the unpleasent effect that valid
C expressions have a different meaning in the input and and the output of the code generation process. This situation
became unbearable after intoducing doxygen for documentation of C code. Then expressions like \f$ x_{1,1} \f$
could not be coded in a reasonable way the old version.

2.6.4 Classes and functions provided by the code generator

class mmgroup.generate_c.TableGenerator(tables={}, directives={}, verbose=False)
Automatically generate a .c file and a .h file from a source

Basic idea: We copy a source file to the .c file. The source contains directives to enter precomputed tables, code
snippets or constants into the .c file, and prototypes into the .h file.

We copy the content of the source file directly to the .c file. In the source file we also parse certain directives and
we replace them by automatically generated code snippets in the .c file and in the .h file.

The arguments given to the constructor of this class specify the meaning of the directives.

For a more detailed description of these directives see module make_c_tables_doc.py

Parameters

• tables – Here tables is a dictionary of with entries of shape:
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``name`` : ``table`` .

name is a string that is a valid python identifier. table is the python object to be referred by
that name whenever an argument is evaluated as a python expression.

• directives – Here directives is a dictionary of shape:

``function_name`` : ``function`` .

The function function is executed when a directive of shape:

// %%function_name

occurs as a directive in the source file. The arguments following the directive are evaluated
and passed to the function function. That function should return a string. This string is
merged into the output .c file.

If directives is mmgroups.generate_c.NoDirectives then also built-in directives are
not executed.

• verbose – optional, may be set True for verbose console output

External modules importing this class should use methods set_tables, generate, and table_size only.

generate(source, c_stream, h_stream=None, gen='c')
Generate a .c and a .h file form a source.

Here source must be an iterator that yields the lines of the source file. This may be a readble object of
class _io.TextIOWrapper as returned by the built-in function open().

Parameters c_stream and h_stream must be either None or an instance of a class with a write method,
e.g. a writable object of class _io.TextIOWrapper. Then the output to the c file and to the h file is written
to c_stream and to h_stream.

class mmgroup.generate_c.UserDirective(f, eval_mode='', prefix=False)
Convert a function for use in a code generator directive

Each code generator directive corresponds to a function. Evaluating that function with the arguments given to
the directive results in a string that makes up the code generated by the directive.

The list of arguments of a code generator directive is necessarily a string. Usually, this string is converted to a
python expression which is evaluated using the dictionary ‘tables’ given to the code generator. Here dictionary
tables contains the local variables used by the evaluation process.

The constructor of this class returns an object which is a callable function. Calling that function has the same
effect as calling the function f, which is the first argument passed to the constructor.

Additional information for dealing with the arguments of the function may be given the constructor. This infor-
mation is used by the code generator if an instance of this class is registered at the code generator as a directive.
For registering a directive in that way you may simply enter an instance of this class as a value in the dictionary
directives passed to the constructor of class TableGenerator.

Using this feature you may automatically convert arguments of the function e.g. to strings, integers or python
objects. You may also prepend a local variable from dictionary tables to the list of user-specified arguments of
the directive. The latter feature gives a directive the flavour of a member function of a class, similar to prepending
self to the list of user-specified arguments.

Parameters

• f – A callable function which is executed when the code generator parses a user-defined
directive. The arguments of such a directive are passed to function f as arguments.
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• eval_mode – This is a string specifying the syntax of the arguments. The i-th character of
the string eval_mode controls the evaluation of the i-th argument of function f as follows:

– 'p' Evaluate the argument to a python object (default).

– 'i' Evaluate the argument to an integer.

– 's' Evaluate the argument to a string, ignoring dictionary

It eval_mode is '.' then a single parameter containing just the given string is passed
to function f as a single argument without any parsing with python.

• prefix – Describes to an optional local variable of the code generator prepended to the list
of arguments of the directive. It may be one of the following:

– False: Nothing is prepended

– True: The dictionary of all local variables is prepended

– any string: The local variable with that name is prepended

class mmgroup.generate_c.UserFormat(f, eval_mode='', prefix=False, fmt=None, arg_fmt=None)
Convert a function for string formatting in the code generator

The code generator evaluates expressions in curly braces %{...} in the source code with the python .format()
function for stings.

It is desirable that %{int:2*3} evaluates to a string representing the integer constant int(2*3) for some built-in
and user-defined functions such as function int.

Therefore we need a python object with name int that behaves like the function int() when being called. That
object should also have a __format__ method that returns str(int(<expression>)) if a string representing
a valid python expression is passed to the __format__ method.

UserFormat(int) creates such an object. Thus:

tables = {"int": UserFormat(int)}
"{int:2*3}".format(**tables))

evaluates to str(int(2*3)). Of course, function int may be replaced by any user-defined function.

Things get more interesting if we prepare a dictionary for the code generator:

from mmgroup.generate_c import TableGenerator, UserFormat
# Prepare tables for a code generator
tables = {"int": UserFormat(int), "a": 3, "b":5}
# Create a code generator 'codegen'
codegen = TableGenerator(tables)
# Make a sample source line of C code
sample_source = " x = %{int: a * b + int('1')};\n"
# generate file "test.c" containing the evaluated sample line
codegen.generate(sample_source, "test.c")

Here the string {int: a * b + int('1')} in the sample source line is formatted with the standard python
.format method. The .format method obtains the entries of the dictionary tables as keyword arguments.

So %{int: a * b + int('1')} evaluates to str(3*5+1), and the C file "test.c" will contain the line:

x = 16;

So UserFormat(f) creates an object the behaves like f when it is called; and it returns str(f(arg1,arg2,.
..)) when it is invoked in "{f:arg1,arg2,...}".format(f = f).
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Here the argument list arg1, arg2,... is processed in according to the same rules as the argument list of a
user-defined directive in class UserDirective.

Parameters

• f – A callable function which is executed when the code generator parses a user-defined
formatting string in curly braces preceded by a ‘%’ character, such as %{...}. The arguments
given in the formatting string are passed to function f as arguments.

• eval_mode – This is a string specifying the syntax of the arguments in the same way as in
class UserFunction.

• prefix – Describes to an optional local variable of the code generator prepended to the list
of arguments of the function in the same way as in class UserFunction.

• fmt – By default, function str() is applied to the result of function f in order to convert that
result to a string. This behaviour can be modified by setting parameter fmt.

if fmt is a callable function then str(f(*args)) is replaced by fmt(f(*args)).

• arg_fmt – If this parameter is set then the corresponding .format method returns
arg_fmt(*args) instead of str(f(*args)). This overwrites the parameter fmt.

mmgroup.generate_c.c_snippet(source, *args, **kwds)
Return a C code snippet as a string from a source string

Here source is a string that is interpreted in the same way as the text in a source file in method generate() of
class TableGenerator. The function applies the code generator to the string source and returns the generated
C code as a string.

All subsequent keyword arguments are treated as a dictionary and they are passed to the code generator in class
TableGenerator in the same way as parameter tables in the constructor of that class.

One can also pass positional arguments to this function. In the source string they an be accessed as %{0}, %{1},
etc.

A line starting with // %% is interpreted as a directive as in class TableGenerator.

The keyword directives is reserved for passing a dictionary of directives as in class TableGenerator.

In order to achieve a similar effect as generating C code with:

tg = TableGenerator(tables, directives)
tg.generate(source_file, c_file)

you may code e.g.:

c_string = c_snippet(source, directives=directives, **tables)

If this function cannot evaluate an expression of shape %{xxx} then the expression it is not changed; so a sub-
sequent code generation step may evaluate that expression. An unevaluated argument in a directive leads to an
error.

mmgroup.generate_c.format_item(n, format=None)
Format a python object n to a C string for use in a C table

The default format is to apply function str() to the object.

The current version supports integer formats only. Parameter format must be one of the following strings:

'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64'
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If format is one of 'int8', 'int16', 'int32', 'int64' then an integer is reduced modulo the appropri-
ate power of two and formatted hexadecimal. Everything else is formatted ‘as is’. An argument n = None is
interpreted as the NULL poiner in C.

mmgroup.generate_c.make_doc()

mmgroup.generate_c.make_table(table, format=None)
Convert a python table to a C sequence separated by commas

Parameter table may be anything iterable. Function

format_item(x, format)

is applied to each item x in the table.

The output may contain several lines. Iterated lists of integers (or strings) are converted to C constants as ex-
pected. E.g. the list [[1,2], 3, [4,5,6]] is converted to something like:

{1,2}, 3, {4,5,6}

mmgroup.generate_c.prepend_blanks(string, length)
Prepend length blank characters to each line of a string

Here parameter string is a string that may consist of several lines.

mmgroup.generate_c.pxd_to_pxi(pxd_file, module=None, translate=None, nogil=False)
Extract Cython wrappers from prototypes in a .pxd file

A .pxd file contains prototypes of external C functions and it may be included into a .pyx file in order to create
a Cython module that uses these C functions.

This function returns a string containing python wrappers of the C functions in the pxd file. This string may be
used as a part of an automatically generated .pxi file that can be included directly into a .pyx file. Here the C
functions in the .pxd file to be included must be sufficiently simple as indicated below.

The returned string starts with two lines:

cimport cython
cimport <module>

Here <module> is given by the parameter module, By default, module is constructed from the name pxd_file
of the . pxd file.

The .pxd file is parsed for lines of shape:

<return_type> <function>(<type1> <arg1>, <type2> <arg2> , ...)

Every such line is converted to a string that codes function, which is a Cython wrapper of that function of shape:

@cython.boundscheck(False) # Deactivate bounds checking
@cython.wraparound(False) # Deactivate negative indexing.
def <translated_function>(<arg1>, <arg2> , ...):

cdef <type1> <arg1> = <arg1>_v_
cdef <type2> <arg2> = <arg2>_v
cdef <return_type> _ret
ret_ = <module>.<function>(<arg1>_v_, <arg2>_v_ , ...)
return ret_

<translated_function> is the string computed as translate(<function>), if the argument translate
is given. Otherwise is <translated_function> is equal to <function>.
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<return_type> and <type1>, <type2>, ... must be valid types known to Cython and C. The types
<type1>, <type2> used for arguments may also be pointers. Then pointers are converted to memory views
e.g:

uint32_t <function>(uint8_t *a)

is converted to:

@cython.boundscheck(False) # Deactivate bounds checking
@cython.wraparound(False) # Deactivate negative indexing.
def <translated_function1>(a):

cdef uint8_t[::1] a_v_ = a
cdef uint32_t ret_
ret_ = <function>(&a_v_[0])
return ret_

The <return_type> may be void, but not be a pointer. Other types are not allowed.

We convert a function only if a line containing the string “# PYX” (possibly with leading blanks) precedes the
declaration of a function. In the code generator you may use the EXPORT directive with options px to enter such
a line into the source file.

If nogil is True, a C function is called with as follows:

with nogil:
ret_ = <function>(&a_v_[0])

Then the C function <function> must be e.g. declared as follows:

cdef extern from "<file>.h" nogil:
int <function> (int a, int *b)

This feature releases the GIL (Global Interpreter Lock) when calling the function.

mmgroup.generate_c.generate_pxd(pxd_out, h_in, pxd_in=None, h_name=None, nogil=False)
Create a .pxd file from a C header file.

Here parameter h_in is the name of a C header file that has usually been generated with method generate of
class TableGenerator. In such a header file, some exported function are preceded by a comment of shape

// %%EXPORT <parameter>

There <parameter> is a string of letters describing the way how a function is exported. The function is entered
into the output .pxd file if <parameter> contains the letter 'p'.

Method generate_pxd creates a .pxd file with name pxd_file that contains information about these exported
function.

A .pxd file is used in Cython. Its content is:

cdef extern from <h_file_name>:
<exported function 1>
<exported function 2>
...

Here <h_file_name> is given by parameter h_name.

Parameters

• pxd_out – Name of the output .pxd file.
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• h_in – Name of the header file from which external functions are copied into the .pxd file
as a cdef extern from statement.

• pxd_in – An optional name of a input .pxd file to be copied in the output .pxd file in front of
the cdef statement. If that parmeter is a string containing a newline character \n then that
string is copied directly into the output .pxd file.

• h_name – Name of .h file to to be placed into the statement cdef extern from
<h_file_name>.

• nogil – Optional, exported functions are declared as nogil when set.

2.6.5 Support for Sphinx mockup feature when generating documentation

We use the Sphinx package on the Read the Docs server for generating documentation. On that server we do not want to
compile .c files. However, we want the .c files to be present for extracting documentation from them, using the Doxygen
tool. Here it suffices if the prototypes and comments relevant for documentation are present in the .c files.

This means that we have to perform the code generation process also on the documentation server. Note that some code
generation procedures in the Tables classes in the python modules used for code generation rely on compiled Cython
extensions. But Cython extensions will not be compiled on the documentation server. To avoid using compiled code,
in each python module to be used for code generation we may add a MockupTables class to the Tables class already
present. Such a MockupTables class may generate the parts of a .c file relevant for documentation only, without using
any compiled Cython extensions.

We may set the --mockup option in the code generation tool generate_code.py. Then any Tables class in a python
module to be used for code generation is replaced by the MockupTables class in that module, if present.

2.6.6 How the code generator is used

Warning!

At present the process of generating C code is under construction.

We plan to switch to the meson build system. Therefore a much more declarative style is required for describing an
buld operations. Thus the description here is pertty much outdated!

For generating C code, an instance of class TableGenerator in module mmgroup.generate_c must be generated.
That instance takes two arguments tables and directives as described in section Code generation.

There are many tables and directives needed for different purposes. By convention we provide a variety of classes,
where each class provides two attributes tables and directives providing dictionaries of tables and directives,
respectively. These dictionaries are suitable for creating instances of classes TableGenerator. Such classes are
called table-providing classes. Attributes tables and directives may also be implemented as properties.

Python scripts with names codegen_xxx.py in the root directory of the source distribution create instances of class
TableGenerator that will generate C programs and also the corresponding header files. These python scripts are run
as subprocesses of the build_ext command in the setup.py script.

Each instance of class TableGenerator may take the union of the directories obtained from methods tables()
and directives() of several table-providing classes. A simple example for a table-providing class is the class
Lsbit24Function in module mmgroup.dev.mat24.mat24_aux.
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2.7 Description of some typical bugs

In this section we decribe some typical bugs that may occur during the develpment process and that may be extremely
hard to find.

2.7.1 1. Cleaning up a corrupted local git repository

After a long development session the local git repository might be corrupted for what reason ever. Here the best cure
is to delete everything in the repository (exept for subdirectory .git) and to checkout everythinh with git. If you do not
want to do so, you may cleanaup intermediate files as follows.

First open a command shell, switch to the root directory of your local repository, and make sure that your C compiler
works in that shell. Then enter the following statements:

python cleanup.py -a
git checkout .
python setup.py build_ext --inplace
python -m pytest ./src/mmgroup/ -v -s -m "not slow"

Then for creating the documentation you should enter something like the following (details depending on the operating
system):

cd docs
sphinx-build -M html source build -E -a
sphinx-build -M latexpdf source build -E -a
cd ..

2.7.2 2. Documentation is created correctly on the local host but not on readthe-
docs

Whenever we update the master branch in git on the gitbub server, this automatically starts a process on the readthedocs
server that updates the documentation. In that case the developer should check the documentation on the readthedocs
server at

https://mmgroup.readthedocs.io/en/latest/index.html

If this documentation is incorrect then the developer should check the logfiles of the last generation of the documentation
on readthedocs. For generating documentation, the readthedocs server starts a sequence of processes, and for each
process the output is logged.

There is one type of bug that is difficult to find. If this bug occurs, then in the output of one of the processes that invokes
python -m sphinx ... there may be an error message similar to the following message:

WARNING: autodoc: failed to import module ‘mm_group’ from module ‘mmgroup’; the following exception was
raised:

No module named ‘mmgroup.mat24’

This message has to do with the mockup of python extensions when running the Sphinx documentation tool on the
readthedocs server.

We do not use any C compiler on the readthedocs server, so that python extensions written in Cython are not available.
When running Sphinx then all python objects to be documented are imported, so that their docstrings can be processed.
Therefore all Cython extensions must be mocked up in Sphinx. This means that we tell Sphinx that these extensions
are not available. For details see
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https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html#confval-autodoc_mock_imports

The Cython extension mat24 is not mocked up in Sphinx, but it is replaced by class mmgroup.dev.mat24.mat24_ref.
Mat24 instead.

So instad of simply importing the extension mat24 we have to do the following:

>>> try:
>>> from mmgroup import mat24
>>> except (ImportError, ModuleNotFoundError):
>>> from mmgroup.dev.mat24.mat24_ref import Mat24
>>> mat24 = Mat24

More sophisticated examples of importing objects from module mat24 are given e.g. in modules mmgroup.mm_group
and mmgroup.structures.autpl.

One way to debug such a problem on the local host (and not on the readthedocs server) is as follows. Use pip
uninstall mmgroup (or similar) to uninstall the mmgroup package Then execute the following commands in your
shell:

python cleanup.py -a
git checkout .
set readthedocs=True
python setup.py build_ext --inplace
cd docs
sphinx-build -M html source build -E -a
sphinx-build -M latexpdf source build -E -a
cd ..
# Here you should inspect the output of the sphinx-build
# commands for debugging
unset readthedocs # in Windows use 'set readthedocs=' instead
# Reverse the effect of 'set readthedocs=True'

If you are lucky then the errors occuring on the readthedocs server will now also occur on your local host.

Warning: After typing that sequence into your shell, your environment is probably corrupted; and you should
proceed as in subsection Cleaning up a corrupted local git repository.
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CHAPTER

THREE

THE C INTERFACE OF THE MMGROUP PROJECT

3.1 Introduction

This document describes the functionality of the C modules in this project. For most of these C modules there is also
a python extension. Unless otherwise stated, each documented C function is wrapped by a Cython function with the
same name and signature.

Note that almost all parameters of such a C function are declared as (signed or unsigend) integers, or as pointers to
such integers. In python, a numpy array of appropriate dtype may be passed as an argument to a parameter delared as
a pointer to an integer.

3.2 Description of the mmgroup.mat24 extension

The automatically generated file mat24_functions.c contains the C code for the functions exported by the python
extension mmgroup.mat24.

These functions are documented in file mat24_functions.c. Here just give an overview of the functionality of that
module.

File mat24_functions.c has been generated from the source file mat24_functions.ske using the code generator
in module mmgroup.generate_c.

The functions in file mat24_functions.c perform basic computations in the Golay code, in its cocode, and in the
Mathieu group Mat24. They also deal with Parker loop Pl and with its automorphism group AutPl. A more comfort-
able python interface to these objects is provided by the python classes GCode, Cocode, PLoop, and AutPL in module
mmgroup.

All C functions in file mat24_functions.c start with the prefix mat24_. These functions are also called from C
functions in other modules. Therefore we store the binary code for these functions in a shared library. For some of
these functions there are also macros (defined with #define), starting with mat24_def_.

There is a one-to-one correspondence between the functions in mat24_functions.c and the function exported from
the python extension mmgroup.mat24, see subsection Mapping C functions to python functions for details.

The python class Mat24 in module mmgroup.dev.mat24.mat24_ref contains pure python implementations of most
functions of the mmgroup.mat24 extension as class methods. This class is used for testing and as a substitute for the
mmgroup.mat24 extension in an early stage of the build process.

In the following subsections the term C functions refers to the C functions in file mat24_functions.c. In the docu-
mentation, the names of the C functions are given without the mat24_ prefix. The term API reference means the main
document The mmgroup API reference of this project.
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3.2.1 The Golay code C and its cocode C*

The Mathieu group Mat24 operates as a permutation group on a set of 24 elements which we label with numbers
0,. . . ,23 for use in Python and C. So it also operates on a vector space V = GF(2)**24, with GF(2) = {0,1}. Here
** means exponentiation.

A vector v in a vector space over GF(2) is called a bit vector. We represent a bit vector as an integer, so that the i-th
bit of v (with valence 2**i) is the i-th component of v.

The Golay code C ia a 12-dimensional subspace of V fixed by Mat24. There are functions for checking and completing
codewords and for getting the syndrome of a 24-bit vector.

We internally use a basis of V such that the first 12 basis vectors are a transversal of the Golay cocode and the last 12
basis vectors span the Golay code. These basis vectors are listed in the API reference.

We represent vectors in V, C and C* and in the subset of octads of C as follows:

The 759 octads are numbered from 0 to 758. They do not form a vector space. The 2**12 Golay code words are
represented as binary numbers 0 to 4095. The 2**12 cocode words are represented as binary numbers 0 to 4095. A
more detailed description is given in the API reference.

As usual, binary numbers representing bit vectors are added with the XOR operation ^. Unused high bits in input bit
vectors are ignored.

Functions changing an object from one representation xxx to another representation yyy are named xxx_to_yyy,
where xxx, yyy is as follows:

vect: standard representation of a bit vector in V = GF(2)**24
coded as a 24-bit integer.

vintern: internal representation a bit vector in V as a vector in
the basis given above, coded as 24-bit integer.

gcode: representation of a Golay code word in the basis given
given above, coded as 12-bit integer.

octad: representation as an octad numbered from 0 to 758
(in lexical order given by representation 'gcode')

cocode: representation as a cocode word in the basis given above,
coded as 12-bit integer.

All these representations are given as unsigned integers.

We implement the following conversion functions:

vect_to_vintern, vintern_to_vect, vect_to_cocode,
vintern_to_vect, gcode_to_vect, cocode_to_vect.

Here irrelevant bits of the input are ignored. Function cocode_to_vect returns one of many possible solutions.

In the following functions the input is checked and the function fails in case of an error:

vect_to_gcode, vect_to_octad, gcode_to_octad,
octad_to_vect, octad_to_gcode

In case of failure, these C functions return a special value as indicated in the documentation of the function in the .c
file. The corresponding python functions raise ValueError in case of failure.

Function syndrome() takes a vector v and calculates its syndrome, which is a vector of minimum weight equivalent
to v modulo the Golay code. Function cocode_syndrome() takes a cocode representation of a cocode word instead.

Function scalar_prod() returns the scalar product of a Golay code vector in gcode and a cocode vector in cocode
representation.
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3.2.2 The Mathieu group Mat24

This class also contains support for the Mathieu group Mat24. An element of Mat24 can be represented in one of the
following ways:

perm: Representation as an array of length 24 encoding a
permutation of the integers 0,...,23 as a mapping.

m24num: Representation as an integer 0 <= i < 244823040. Here i
is the number of the permutation in lexicographic order.
So the identity permutation is coded as 0.

matrix: Representation as a 12 x 12 bit matrix acting on the Golay
code by right multiplication. This matrix acts on a Golay
code vectors (given in the 'gcode' representation) by
right multiplication.
Such a matrix is implemented as an array of integers with
each integer corresponding to a row vector of the matrix.
The purpose of this representation is to support
the Parker loop and its automorphism group. Therefore a
row vector is implemented as a 32-bit integer.

We implement the following conversion functions:

m24num_to_perm, perm_to_m24num, perm_to_matrix, matrix_to_perm.

There is a function perm_check() for checking if an array of length 24 really represents an element of the Mathieu
group Mat24. All other function operating on Mat24 in any way do not check if their inputs are really in Mat24. They
will output garbage on bad input, but they are not supposed to crash.

The easiest way to create a random element of Mat24 is to create a random integer 0 <= x < 244823040, and to call
function m24num_to_perm(x).

3.2.3 Operation of the group Mat24 on vectors

Elements of Mat24 operate from the right on vectors in V = GF(2)**24 or on Golay code or cocode vectors. A
function performing such an operation has the name:

op_<vector>_<group>

where <vector> indicates the representation of the vector space and <group> indicates the representation of the group.
We implement the functions:

op_vect_perm, op_gcode_matrix, op_gcode_perm, op_cocode_perm.

E.g. function op_gcode_matrix operates on a Golay code word (in gcode representation) by right multiplying an
element m of Mat24 with it. Here element m is a 12 times 12 matrix (in matrix representation).
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3.2.4 Group operation in the group Mat24

Multiplication and inversion in the group Mat24 is supported for the permutation representation perm. Therefore we
have functions:

mul_perm, inv_perm

3.2.5 The Parker loop Pl

We support the Parker loop Pl and also its automorphism group AutPl.

An element of Pl is a pair (v, s), with v a Golay code word and s a sign bit, as described in the API reference. We
represent the element (v, s) as a 13-bit integer, with v given by bits 0,. . . ,11 (in gcode representation) and the sign s
given by bit 12. We call this representation of the Parker loop the ploop representation. So we can convert and element
of C in ‘gcode’ representation to an element of Pl in ploop representation by adjusting the sign in bit 12.

Function mul_ploop() returns the product of two elements of the Parker Loop. Function inv_ploop() returns the
inverse of ab element of the Parker loop.

Let theta be the cocycle for the Parker loop defined in the API reference. For an element v1 of of C or Pl in gcode
or ploop representation, the function ploop_theta(v1) returns the value theta(v1) (which is in C*) in cocode
representation. Function ploop_cocode(v1, v2) returns the value of the coycle theta(v1, v2), which is 0 or 1.

3.2.6 The group AutPl of standard automorphisms of the Parker loop

An automorphism of the Parker loop is implemented as an array a of twelve 32-bit integers. The lowest 13 bits of
a[i] encode the image of the i-th basis vector of the Parker loop. Here the basis of the Parker loop corresponds to the
selected basis of the Golay code, and each basis vector has positive sign.

The bits 13,...,24 of the vectors a[i] encode a quadratic form which facilitates computations in AutPl, as described
in section Implementing Automorphisms of the Parker loop in the Guide for developers.

This representation of AutPl is called the autpl representation. We only use the autpl representation for elements
of AutPl.

Function perm_to_autpl(c, p) computes an automorphism m of the Parker loop created from an element p of
Mat24 (given in perm representation) and a cocode element c (given in cocode representation). If m is equal to the
result of perm_to_autpl(c, p), then we can get back p and c be computing p = autpl_to_perm(m) and c =
autpl_to_cocode(m).

Function cocode_to_autpl(c) is equivalent to function perm_to_autpl(c, p0), where p0 is the identity permu-
tation. Note that:

perm_to_autpl(c, p) = cocode_to_autpl(c) * perm_to_autpl(0, p).

Here perm_to_autpl(0, p) is equivalent to standard representative of p in AutPl, and cocode_to_autpl(c) is
a diagonal automorphism, as described in section Automorphisms of the Parker loop of the API reference.

Function op_ploop_autpl(v, m) applies Parker loop automorphism m to element v of Pl and returns the result.

Function mul_autpl(m1, m2) computes the product m1 * m2 of the Parker loop automorphisms m1 and m2. Function
inv_autpl(m1) computes the inverse of the Parker loop automorphism m1.
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3.2.7 Auxiliary functions

Here is an overview of some auxiliary functions in this class. They are described in the corresponding function docu-
mentation::

bw24 bit weight of the lowest 24 bits of an integer
lsbit24 min(24, least significant bit pos.) for an integer
gcode_weight weight of a Golay code word in 'gtype' representation
vect_to_bit_list given a bit vector in V, it computes the lists of

the positions of the 0 bits and of the 1 bits of v.
extract_b24 extract bits from bit vector using a 24-bit mask
spread_b24 spread bit vector according to a 24-bit mask

3.2.8 Internal operation

For switching from the standard representation to the internal representation we use three tables with 2**8 entries of
24 bit length. For switching back from internal to standard representation we use three other tables of the same format.
There are also tables for computing the syndrome of a vector in V with respect to the Golay code. There is yet another
table for the cocycle theta of the Parker loop.

3.2.9 Abbreviations for functions and parameters in this class

The following list of abbreviations used in names of functions allows to infer the action of most functions in this module:

Abbreviation Meaning Data type

assoc associator (in Golay code or Parker loop)
autpl automorphism of the Parker loop Pl uint32_t[12]
bw24 bit weight of the lowest 24 bits of an int
cap intersection (of Golay code elements)
cocode element of Golay cocode C* uint32_t
cocycle cocycle: Pl times Pl -> {0,1}
comm commutator (in Golay code or Pl)
gcode element of Golay code C uint32_t
inv inversion (in Mat24, Pl, or AutPl)
lsbit24 least significant bit of an integer,

counting bits 0,...,23 only
m24num number of an element of Mat24 uint32_t
matrix element of Mat24 as binary matrix

acting on the Golay code C uint32_t[12]
mul multiplication (in Mat24, Pl, or AutPl)
net Benes network for an element of Mat24 uint32_t[9]
octad number of an octad, i.e. a Golay code

element of weight 8 uint32_t
op op_<vector>_<operation> means:

apply <operation> to <vector>
op_all apply operation to all vectors
perm element of Mat24 as a permutation uint8_t[24]
ploop element of the Parker loop Pl uint32_t
pow power operator (in Pl)
scalar_prod scalar product (of Golay code and cocode)

(continues on next page)
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(continued from previous page)

suboctad suboctad, see function suboctad_to_cocode
syndrome syndrome (after decoding Golay code) uint32_t
theta cocycle theta: Pl -> C^* in Parker loop
to <x>_to_<y> means: return representation <y>

of an object given in representation <x>
vect vector in V = GF(2)**24 uint32_t
vintern vector in V, in internal representation uint32_t

3.2.10 Conventions for parameters in C functions

Parameters of functions are either integers or arrays of integers. Here all integer types are unsigned and of fixed length,
such as uint8_t, uint16_t or uint32_t.

The type of a parameter is given by a single letter in the name of the parameter:

Name Meaning Type
a array specified in documentation of function unspecified
c Golay cocode element, represented as 'cocode' uint32_t
m permutation in Mat24 or automorphism of Pl

represented as a bit matrix uint32_t[12]
p permutation in Mat24 represented as 'perm' uint8_t[24]
u_<x> unsigned integer, e.g. unspecified

u_exp: integer denoting an exponent
u_m24: number of a permutation in Mat24
u_octad: number of octad, 0 < u_octad < 259
u_width: integer denoting a bit width

v vector in V, Golay code C or Parker loop Pl
represented as vect, vintern, gcode or ploop uint32_t

Integer input parameters have name u_<x>, e.g. u_m24, u_exp. An integer computed by a function is returned as
return value. Input array parameters have a digit as a suffix, e.g.: v1, v2, m1. Output array parameters have the suffix
_out, e.g.: p_out. Input/output array parameters have the suffix _io, e.g.: m_io.

3.2.11 Mapping C functions to python functions

All C functions in module mat24_functions are documented. This documentation is not repeated for the correspond-
ing python functions in module mmgroup.mat24.

The rules for converting a C function to a python function are as follows:

• To obtain the name of the python function, strip off the prefix mat24_ from the name of a C functions.

• To obtain the tuple of input parameters for the python function, take the tuple of parameters of the C function
and drop are parameters with suffix _out.

In the corresponding python function, an iterable object may be passed where the C function expects a pointer
to an integer. The minimum length of that iterable object is either clear from the context or documented in the C
function.

• To obtain the return value of the python function, check if the C function has any parameters with suffix _out.
Then the sequence of returned objects is the sequence of these parameters, possibly preceded by the return value
if the C function returns an integer value.
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As usual in python, a sequence of length 1 is returned as a single object, and a sequence of length >= 1 is returned
as a tuple.

A parameter with suffix _out is returned as a list of integers.

• A C function may fail under certain circumstances.

A failure of a function is indicated in the return value of the function. Details are given in the documentation of
the function. The corresponding python function raises ValueError if the C function fails.

• The python function drops the return value of the C function from the sequence of returned python objects in
certain cases.

If the documentation of the C function contains the phrase ‘Returns 0 in case of success and (anything else) in
case of failure’ then the return value is just a status indicator and hence dropped by the python function.

If the documentation of the C function contains a phrase like ‘Returns the length of the list xxx_out’ then the
python function adjusts the length of that returned list appropriately and drops the return value.

• Parameters with suffix _io refer to pointers in the C function and hence to iterables in the corresponding python
function. Here the sufix _io means that the function may modify that iterable object.

3.2.12 C interface

Header files

File mat24_functions.h is the header file for mat24_functions.c.

Defines

MAT24_ORDER

Order of Mathieu group Mat24. This is equal to 244823040.

MAT24_SUBOCTAD_WEIGHTS

(MAT24_SUBOCTAD_WEIGHTS >> x) & 1 is halved weight of suboctad x (mod 2).

mat24_def_lsbit24(v1)
Macro version of function mat24_lsbit24.

mat24_def_lsbit24_pwr2(v1)
Special macro version of function mat24_lsbit24.

This is faster than mat24_def_lsbit24, but here v1 must be power of two.

mat24_def_parity12(v1)
Parity of vector v1 of 12 bits length.

Generate a sequence of statements that replaces v1 by the bit parity of v1 & 0xfff.

mat24_def_octad_to_gcode(o)
Eqivalent to mat24_def_octad_to_gcode(o)

mat24_def_octad_to_gcode(o) returns the number of the Golay code word corresponding to octad o. Pa-
rameter o is not checked.
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mat24_def_gcode_to_octad(v)
Eqivalent to mat24_def_gcode_to_octad(v)

mat24_def_gcode_to_octad(v) returns the number of the octad corresponding to Golay code vector v, with
v in gcode. It returns garbage if v is not an octad.

mat24_def_not_nonstrict_octad(v)
Check if v (or its complement) is an octad.

Returns 0 if v (or its complement) is an octad and 1 otherwise.

Vector v must be given in gcode representation

mat24_def_gcode_to_vect(v)
Convert Golay code element number v to a vector in GF(2)^24

Macro version of function mat24_gcode_to_vect.

mat24_def_syndrome_from_table(t)
Convert entry t of table MAT24_SYNDROME_TABLE to syndrome.

An entry t of the table MAT24_SYNDROME_TABLE encodes an odd cocode syndrome. The macro returns that
syndrome as a bit vector.

mat24_def_suboctad_weight(u_sub)
Equivalent to mat24_suboctad_weight(u_sub)

Enums

enum mat24_rand_flags
Flags describing subgroups of the Mathieu group 𝑀24.

This enumeration contains flags describing some subgroups of the Mathieu group 𝑀24 fixing certain subsets (or
sets of subsets) of the set Ω̃ = {0, . . . , 23} on which the group 𝑀24 acts. Intersetions of these subgroups may
be described by combining these flags with the bitwise or operator |. For each flag we state the set being fixed.

Values:

enumerator MAT24_RAND_2
fixes {2, 3}

enumerator MAT24_RAND_o
fixes {0, . . . , 7}

enumerator MAT24_RAND_t
fixes {{8𝑖, . . . , 8𝑖 + 7} | 𝑖 < 3}

enumerator MAT24_RAND_s
fixes {{4𝑖, . . . , 4𝑖 + 3} | 𝑖 < 6}

enumerator MAT24_RAND_l
fixes {{2𝑖, 2𝑖 + 1} | 4 ≤ 𝑖 < 12}
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enumerator MAT24_RAND_3
fixes {1, 2, 3}

Functions

static inline uint32_t mat24_inline_cocode_to_suboctad(uint32_t c1, uint32_t v1, uint32_t u_strict)
Inline version of function mat24_cocode_to_suboctad

static inline uint32_t mat24_inline_suboctad_to_cocode(uint32_t u_sub, uint32_t u_octad)
Inline version of function suboctad_to_cocode

int32_t mat24_check_endianess(void)
Check endianess of the machine.

Return 0 if machine is little endian, 1 if it is Big endian, and -1 if endianess could not be detected.

C functions for the Mathieu group 𝑀24

File mat24_tables.c contains tables that are used in the file mat24_functions.c.

Variables

const uint16_t MAT24_OCT_DEC_TABLE[759]
Table for converting octad to gcode representation.

The public macro mat24_def_octad_to_gcode uses this table

const uint16_t MAT24_OCT_ENC_TABLE[2048]
Table for converting gcode to octad representation.

The public macro mat24_def_gcode_to_octad uses this table

const uint16_t MAT24_THETA_TABLE[]
Table containing data about the Golay code.

For 0 <= d < 0x800 entry d contains the following information the code word d, with d in gcode representa-
tion.

Bit 11,. . . ,0: mat24_ploop_theta(d)

Bit 14,. . . ,12: Bit weight of code word d in GF(2)**24 divided by 4

Bit 15: reserved

We have d**2 = (-1)**<Bit 12 of entry d> for d in the Parker loop.

const uint8_t MAT24_OCTAD_ELEMENT_TABLE[759 * 8]
For 0 <= i < 759, the entries 8*i,...8*i+7 in the table MAT24_OCTAD_ELEMENT_TABLE are the bit positions
of the octad with the number i.

File mat24_functions.c contains the C implementation of the functionality of Python module mmgroup.mat24

This covers the Golay code, its cocode, the Parker loop, the Mathieu group Mat24, and the group of standard automor-
phisms of the Parker loop.
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Functions

uint32_t mat24_lsbit24(uint32_t v1)
Return position of least significant bit of an integer.

The function returns the minimum of the number 24 and the position of the least significant bit of v1. It uses a
De Bruijn sequence.

uint32_t mat24_bw24(uint32_t v1)
Returns the bit weight of the lowest 24 bits of v1.

uint32_t mat24_vect_to_bit_list(uint32_t v1, uint8_t *a_out)
Stores the positions of 1-bits of a bit vector to an array.

Let w be the bit weight of the bit vector v1 & 0xffffff, i.e. number of bits of v1 at positions < 24 equal to one.
Then the ordered bit positions where the corresponding bit of v1 is 1 are stored in a_out[0],...,a_out[w-1].

Then (v1 & 0xffffff) has 24 - w zero bits. The ordered list of the positions of these zero bits is stored in
a_out[w],...,a_out[23].

The function returns the bit weight w.

uint32_t mat24_vect_to_list(uint32_t v1, uint32_t u_len, uint8_t *a_out)
Stores the positions of 1-bits of a bit vector to an array.

Let w be the minimum of the input u_len and the bit weight of the bit vector v1 & 0xffffff, i.e. number of
bits of v1 at positions < 24 equal to one. Then the first w bit positions where the corresponding bit of v1 is 1
are stored in a_out[0],...,a_out[w-1] in natural order. The function returns w.

For small values w this function is faster than function mat24_vect_to_bit_list.

uint32_t mat24_extract_b24(uint32_t v1, uint32_t u_mask)
Extract the bits of 24-bit vector v1 given by the mask u_mask

If u_mask has bits equal to one at positions i_0, i_1, ..., i_k (in ascending order) then the bit of v1 at
position i_j is copied to the bit at position j of the return value for j = 0,...,k.

uint32_t mat24_spread_b24(uint32_t v1, uint32_t u_mask)
Spread bits of 24-bit vector v1 according to the mask u_mask

If u_mask has bits equal to one at positions i_0, i_1, ..., i_k (in ascending order) then the bit of v1 at
position j is copied to the bit at position i_j of the return value for j = 0,...,k.

uint32_t mat24_vect_to_vintern(uint32_t v1)
Convert bit vector v1 in GF(2)^24 from vector to vintern representation.

uint32_t mat24_vintern_to_vect(uint32_t v1)
Convert bit vector v1 in GF(2)^24 from vintern to vector representation.

uint32_t mat24_vect_to_cocode(uint32_t v1)
Return Golay cocode element corresponding to a bit vector in GF(2)^24.

This amounts to reducing the vector v1 (given in vector representation) modulo the Golay code. The function
returns the cocode element corresponding to v1 in cocode representation.

uint32_t mat24_gcode_to_vect(uint32_t v1)
Convert Golay code element number v1 to a vector in GF(2)^24

Input v1 is a Golay code element in gcode representation. The function returns the bit vector corresponding to
v1 in vector representation.
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uint32_t mat24_cocode_to_vect(uint32_t c1)
Return a vector in GF(2)^24 corresponding to cocode element.

Here c1 is the number of a cocode element in cocode representation. One of 2**12 possible preimages of c1
in GF(2)^24 is returned in vector representation.

uint32_t mat24_vect_to_gcode(uint32_t v1)
Return a vector in GF(2)^24 as a Golay code element.

If the vector v1 (given in vector representation) is in the Golay code then the function returns the number of
that Golay code word. Thus the return value is in gcode representation.

If v1 is not in the Golay code then the function returns (uint32_t)(-1).

uint32_t mat24_gcode_to_octad(uint32_t v1, uint32_t u_strict)
Return a Golay code vector as an octad.

If u_strict is even then the function acts as follows:

If the Golay code vector v1 (given in gcode representation) is an octad or a complement of an octad then the
function returns the number of that octad. Thus the return value is in octad representation. Then we have 0 <=
octad(v1, strict) < 759.

If v1 is not a (possibly complemented) octad then the function returns (uint32_t)(-1).

If u_strict is odd then the function returns (uint32_t)(-1) also in case of a complemented octad v1.

uint32_t mat24_vect_to_octad(uint32_t v1, uint32_t u_strict)
Return a vector in GF(2)^24 as an octad.

If u_strict is even then the function acts as follows:

If the vector v1 (given in vector representation) is an octad or a complement of an octad then the function returns
the number of that octad. Thus the return value is in octad representation. Then we have 0 <= octad(v1,
strict) < 759.

If v1 is not a (possibly complemented) octad then the function returns (uint32_t)(-1).

If u_strict is odd then the function returns (uint32_t)(-1) also in case of a complemented octad v1.

uint32_t mat24_octad_to_gcode(uint32_t u_octad)
Convert an octad to a Golay code vector.

Given an octad u_octad (in octad representation), the function returns the number of the corresponding Golay
code number in gcode representation.

There are 759 octads. The function returns (uint32_t)(-1) in case u_octad >= 759.

uint32_t mat24_octad_to_vect(uint32_t u_octad)
Convert an octad to a bit vector in GF(2)^24.

Given an octad u_octad (in octad representation), the function returns bit vector corresponding to that octad
in vector representation.

There are 759 octads. The function returns (uint32_t)(-1) in case u_octad >= 759.

uint32_t mat24_cocode_syndrome(uint32_t c1, uint32_t u_tetrad)
Return Golay code syndrome of cocode element c1.

Here c1 is a cocode element in cocode representation. mat24_cocode_syndrome(c1, u_tetrad) is equivalent to
mat24_syndrome(mat24_cocode_to_vect(c1), u_tetrad).

The function returns a Golay code syndrome as described in the documentation of function mat24_syndrome().
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uint32_t mat24_syndrome(uint32_t v1, uint32_t u_tetrad)
Return Golay code syndrome of word v1.

Here v1 is an arbitrary word in GF(2)**24 in vector representation. The function returns a Golay code syn-
drome of v1 (of minimum possible bit weight) as a bit vector in vector representation.

Such a syndrome is unique if it has weight less than 4. In that case the unique syndrome is returned.

If the minimum weight of the syndrome is four then the six possible syndroms form a partition of the the underly-
ing set of 24 elements. In this case we return the syndrome of bit weight four where the bit at position u_tetrad
is set. Therefore parameter u_tetrad must satisfy 0 <= u_tetrad <= 24; otherwise the function fails.

If the minimum weight of the sydrome is at most three, parameter u_tetrad must satisfy 0 <= u_tetrad <
24; otherwise the function fails.

The function returns (uint32_t)(-1) in case of failure.

uint32_t mat24_gcode_weight(uint32_t v1)
Returns bit weight of Golay code word v1 divided by 4.

Here 0 <= v1 < 4096 is the number of a Golay code word, i.e. v1 is given in gcode representation.

uint32_t mat24_gcode_to_bit_list(uint32_t v1, uint8_t *a_out)
Store bit positions of Golay code v1 in array a_out

Here 0 <= v1 < 4096 is the number of a Golay code word, i.e. v1 is given in gcode representation. The Golay
code word v1 is stored in the array referred by a_out as an ordered list of the positions of the bits being set in
the word v1.

That array must have physical length at least 24. The function returns the actual length of the returned array,
which is equal to the bit weight of the word v1.

uint32_t mat24_cocode_weight(uint32_t c1)
Return the minimum possible weight of the cocode vector c1

Here c1 is a cocode element in cocode representation.

uint32_t mat24_cocode_to_bit_list(uint32_t c1, uint32_t u_tetrad, uint8_t *a_out)
Store Golay code syndrome of cocode word c1 in an array.

Here c1 is an cocode word in cocode representation. The function stores the sorted bit positions of the syndrome
of c1 in the array referred by a_out and returns the actual length of that array, which is the weight of the
syndrome. The array referred by a_out must have physical length at least 4.

Such a syndrome is unique if it has weight less than 4. In that case the unique syndrome is returned.

If the minimum weight of the syndrome is four then the six possible syndroms form a partition of the the underly-
ing set of 24 elements. In this case we return the syndrome of bit weight four where the bit at position u_tetrad
is set. Therefore parameter u_tetrad must satisfy 0 <= u_tetrad < 24; otherwise the function fails.

If the minimum weight of the sydrome is at most three, parameter u_tetrad must satisfy 0 <= u_tetrad <=
24; otherwise the function fails.

The function returns (uint32_t)(-1) in case of failure.

uint32_t mat24_cocode_to_sextet(uint32_t c1, uint8_t *a_out)
Store a cocode word c1 in array a_out as a sextet.

Here c1 is an cocode word in cocode representation. That cocode word must correspond to a syndrome of length
four, i.e. the syndrome must be a tetrad. Otherwise the function fails.

The function stores the six tetrads that make up the sextet c1 in a_out[4*i],...,a_out[4*i+3] for i =
0,...,5. The (ordered) tetrads are stored in lexical order.
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The function returns (uint32_t)(-1) if c1 has not minimum weight 4.

uint32_t mat24_scalar_prod(uint32_t v1, uint32_t c1)
Return scalar product of Golay code and cocode vector.

v1 is a Golay code vector in ‘gcode’ representation, c1 is a cocode vector in cocode representation.

Actually the function returns the bit parity of v1 & c1 & 0xfff.

uint32_t mat24_cocode_to_suboctad(uint32_t c1, uint32_t v1, uint32_t u_strict)
Convert cocode element c1 to suboctad of octad v1

The function converts a cocode element c1 (in cocode representation) and an octad v1 (in gcode representation)
to a suboctad.

The function returns (o << 6) + u_sub. Here o is the octad number corresponding to octad v1 and u_sub is
the suboctad number corresponding to the cocode element c1, if u_octad is an octad and c1 is an even subset
of u_octad.

Each octad v1 has 64 even subsets, when each subset of v1 is identified with its complement in v1. These subsets
are called suboctads. Let b_0, ..., b_7 be the elements of the octad v1 in the order as returned by applying
function mat24_octad_entries to octad number o. Then the even subset (b_0 , b_i) has suboctad number
2**(i-1) for i = 1,...,6. Combining suboctads by symmetric difference corresponds to combining their
numbers by xor. The empty subocatad has number zero. This yields a one-to-one correspondence between the
integers 0,...,63 and the suboctads of a fixed octad v1, when identifying a suboctad ith its complement.

At present elements of the octads are ordered in natural order. But this is subject to change!

The function fails if v1 is not a octad or c1 cannot be represented as an even subset of v1. If v1 is a complement
of an octad o the o is taken instead of v1. If u_strict is set then the pair (v1, c1) must correspond a short
Leech lattice vector. Otherwise is suffices to specify v1 up to an additive term Ω.

The function returns (uint32_t)(-1) in case of failure.

uint32_t mat24_suboctad_to_cocode(uint32_t u_sub, uint32_t u_octad)
Convert even suboctad of octad to cocode representation.

The function converts a suboctad u_sub (in suboctad representation) of an octad u_octad (in octad repre-
sentation) to a cocode element. It returns that cocode element in cocode representation. This is a partial inverse
of function mat24_suboctad_to_cocode(). The ordering of the suboctads is described in that function.

The function fails if u_octad does not represent an octad. It returns (uint32_t)(-1) in case of failure.

uint32_t mat24_octad_entries(uint32_t u_octad, uint8_t *a_out)
List the entries of an octad.

The function writes the list of entries of octad u_octad (in octad representation) into the array a_out of length
8. The order of these entries is the order used for the conversion of suboctads. It may differ from the natrual
order.

The function returns 0 if u_octad is the number of an octad and (uint32_t)(-1) otherwise.

uint32_t mat24_suboctad_weight(uint32_t u_sub)
Return parity of halved bit weight of the even suboctad.

Here parameter u_sub is the number of a suboctad. A suboctad cooresponds to a subset of an octad of even
parity. The function returns 0 is the bit weight of that subset is divisible by four and 1 otherwise.

The numbering of suboctads is described in the documentation of function mat24_suboctad_to_cocode().
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uint32_t mat24_suboctad_scalar_prod(uint32_t u_sub1, uint32_t u_sub2)
Return scalar product of two suboctads.

The function returns the scalar product of the two suboctads with the numbers u_sub1, u_sub2.

Here the scalar product is the parity of the vector u_sub1 & u_sub2 when u_sub1 and u_sub2 are given as
subsets of an octad in vector notation.

But in this functions parameters u_sub1, u_sub2 are suboctad numbers as documented in function
mat24_suboctad_to_cocode().

uint32_t mat24_cocode_as_subdodecad(uint32_t c1, uint32_t v1, uint32_t u_single)
Represent a cocode element as a subset of a docecad.

Given a Golay cocode element c1 (in cocode representation) and a dodecad v1 (in gcode representation), the
function returns a bit vector c_out equivalent to the cocode word c1, which is a subset of the dodecad d1. This
is possible if the scalar product of c1 and the complement of v1 is even. Otherwise the function fails.

The user may specify a bit position 0 <= u_single < 24 disjoint from the bits of dodecad d1. Then that bit of
the return value c_out will be set if the scalar product mentioned above is odd, and the function succeeds also
in this case.

The intersection of c_out with v1 has bit weight at most 6. If that bit weight is equal to 6 then c_out contains
the least significant bit of the bit vector corresponding to v1.

The function fails if v1 is not a dodecad. It returns (uint32_t)(-1) in case of failure.

uint32_t mat24_ploop_theta(uint32_t v1)
Returns the theta function for the Parker loop.

Here function theta() is a quadratic function from the Golay code C to the cocode C*. Parameter v1 of function
theta is a Golay code word in gcode representation. The result of the theta function is returned as a Golay
cocode word in cocode representation.

The cocycle of the Parker loop is given by:

cocycle(v1, v2) = mat24_scalar_prod(theta(v1), v2),

where mat24_scalar_prod() computes the scalar product.

The function evluates the lower 12 bits of v1 only. Thus v1 may also be an element of the Parker loop.

uint32_t mat24_ploop_cocycle(uint32_t v1, uint32_t v2)
Returns the cocycle of the Parker loop.

Here parameters v1 and v2 are Golay code vectors in gcode representations or elements of the Parker loop,
coded as in function mat24_mul_ploop. Then the Parker loop product of v1 and v2 is given by

v1 (*) v2 = v1 ^ v2 * (-1)**cocycle(v1, v2).

uint32_t mat24_mul_ploop(uint32_t v1, uint32_t v2)
Returns the product of two elements of the Parker loop.

Here the Parker loop elements v1 and v2 are integers coded as follows:

bit 0,...,11: a Golay code word in ``gcode`` representation

bit 12: Parker loop sign

The other bis ofv1 and v2 are ignored.
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uint32_t mat24_pow_ploop(uint32_t v1, uint32_t u_exp)
Returns a power of an element of the Parker loop.

Here v1 is a the Parker loop element coded as in function mat24_mul_ploop(). u_exp is the exponent. The
function returns the power v1 ** exp as an element of the Parker loop.

E.g. mat24_pow_ploop(v1, 3) is the inverse of v1.

uint32_t mat24_ploop_comm(uint32_t v1, uint32_t v2)
Return commutator of Golay code words v1 and v2

This is equal to 0 if the intersection of the bit vectors v1 and v2 has bit weight 0 mod 4, and equal to 1 is that
intersection has bit weight 2 mod 4. Words v1 and v2 must be given in gcode representation.

For Parker loop elements v1 and v2 (coded as in function mat24_mul_ploop) the commutator of v1 and v2 is
equal to

(-1) ** mat24_ploop_comm(v1, v2),

where ** denotes exponentiation.

uint32_t mat24_ploop_cap(uint32_t v1, uint32_t v2)
Return intersection of two Golay code words as cocode word.

Here v1 and v2 are Golay code words in gcode representation. The result is a cocode word returned in cocode
representation.

uint32_t mat24_ploop_assoc(uint32_t v1, uint32_t v2, uint32_t v3)
Return associator of Golay code words v1, v2, and v3

This is the parity of the intersection of the bit vectors v1, v2, and v3. So the function returns 0 or 1. Vectors
v1, v2, v3 are in gcode representation.

The associator of three Parker loop elements v1, v2, v3 is equal to

(-1) ** mat24_ploop_assoc(v1, v2, v3) .

Here v1, v2, v3 are encoded as in function mat24_mul_ploop().

uint32_t mat24_ploop_solve(uint32_t *p_io, uint32_t u_len)
Return cocode element that kills signs of Parker loop elements.

Here p_io refers to an array of u_len Parker loop elements are coded as in function mat24_mul_ploop(). The
function tries to find a cocode element that makes all these Parker loop elements positive, when operating on
them as a diagonal automorphism. The function returns the least cocode element in lexical order satisfying that
condition in the bits 0,...,11 of the return value. For that order we assume that lower bits have higher valence.
If no such cocode element exists, the function fails.

We set bit 12 of the return value to indicate a failure.

The array p_io is destroyed. More specifically, the first k entries of that array are changed to an array of linear
independent Parker loop elements. When these k elements are mapped to positive Parker loop elements, this also
yields a solution of the original problem. If the problem cannot be solved then we put p_io[k-1] = 0x1000.

The function returns the value k in bits 31,...,16 of the result.

uint32_t mat24_perm_complete_heptad(uint8_t *p_io)
Complete permutation in the Mathieu group Mat24 from 7 images.

This is an auxilary function for function mat24_perm_from_heptads(). We use the terminology introduced in
that function.
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The function completes the array p_io to a permutation p in the Mathieu group Mat24. On output, permutation
p is given as a mapping i -> p_io[i] for i = 0,...,23.

On input, the images p_io[i] must be given for i = 0,1,2,3,4,5,8; the other entries of p_io are ignored.

The set (p_io[i], i = 0,1,2,3,4,5,8) must be an umbral heptad with distiguished element p_io[8].
Then the mapping i -> p_io[i], i = 0,1,2,3,4,5,8 is a feasible mapping between umbral heptads; it
extends to a unique permutation in Mat24. Note that 8 is the distingished element of the umbral heptad (0,1,
2,3,4,5,8).

The function returns 0 if the mapping given on input can be extended to an element of Mat24, and a nonzero
value otherwise.

Implementation idea:

We choose pentads, i.e. subsets of size 5 of the set (0,....,23) that consist of known values p_io[i]. We
calculate the syndromes of such pentads, which are triads, i.e. sets of size three. Calculating the syndromes of
the preimages of these pentads we obtain mappings between triads. Intersecting triads in a suitable way we obtain
mappings between singletons, and hence peviously unknown images of elements of the set (0,....,23).

uint32_t mat24_perm_check(uint8_t *p1)
Check if permutation is in in the Mathieu group Mat24.

The function checks the mapping i -> p1[i], i = 0,...,23.

It returns zero if that mapping is a permutation in Mat24 and a nonzero value otherwise.

The implementation uses function mat24_perm_complete_heptad().

uint32_t mat24_perm_complete_octad(uint8_t *p_io)
Complete an octad given by 6 elements of it.

Given entries p_io[i], i = 0,1,2,3,4,5, we calculate values p_io[6], p_io[7] such that the set
(p_io[i], 0 <= i < 8) is an octad. Furthermore, we order the values p_io[6], p_io[7] in such way that
the mapping i -> p_io[i]may be extended to a permutation in the grpup Mat24. This restrtiction determines
the order uniquely. Note that the set 0,...,7 is an octad, which is called the standard octad.

The set p_io[i], i = 0,1,2,3,4,5 must be a subset of an octad; otherwise the function fails. The function
returns 0 in case of success and (uint32_t)(-1) in case of failure.

The implementation is a simplified version of function mat24_perm_complete_heptad().

uint32_t mat24_perm_from_heptads(uint8_t *h1, uint8_t *h2, uint8_t *p_out)
Complete a mapping to a permutation in the Mathieu group Mat24

A permutation in the Mathieu group Mat24 is a mapping from the set (0,...,23) to itself. The function
completes the mapping h1[i] -> h2[i], 0 <= i < 7, 0 <= h1[i], h2[i] < 24 to a permutation i ->
p_out[i], 0 <= i < 24 in the group Mat24. The result is returned in the array p_out[i].

The sets h1[i], 0 <= i < 7 and h2[i], 0 <= i < 7must be umbral heptads, and the mapping from h1 to
h2 must be feasible.

An umbral heptad is a set of seven elements of the set (0,...,23) which is not a subset of an octad. The
syndrome of an umbral heptad, i.e. the smallest set equivalent to the heptad modulo the Golay code, is a sin-
gleton containing exactly one element of the umbral heptad. That element is called the distiguished element of
the heptad. A feasible mapping from an umbral heptad to another umbral heptad is a mapping that maps the
distiguished element of the first heptad to the distiguished element of the second heptad.

It can be shown that a feasible mapping from an umbral heptad to another umbral heptad extends to a unique
element of the Mathieu group.

The function returns 0 if the mapping h1[i] -> h2[i] can be extended to an element of Mat24 and
(uint32_t)(-1) otherwise.
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The implementation uses function mat24_perm_complete_heptad().

uint32_t mat24_perm_from_map(uint8_t *h1, uint8_t *h2, uint32_t n, uint8_t *p_out)
Complete a mapping to a permutation in the Mathieu group Mat24

A permutation in the Mathieu group Mat24 is a mapping from the set (0,...,23) to itself. The function tries
to complete the mapping h1[i] -> h2[i], 0 <= i < n, 0 <= h1[i], h2[i] < 24 to a permutation i ->
p_out[i], 0 <= i < 24 in the Mathieu group Mat24. In case of success, such a permutation is stored in the
array p_out.

The function returns

-1 if the mapping h1[i] -> h2[i] does not extend to a legal permutation of the numbers 0,. . . ,23. Note that
duplicate entries in h1 or h2 are illegal.

0 if no such permutation exists in the Mathieu group Mat24.

1 if the mapping h1[i] -> h2[i] extends to a unique permutation in Mat24.

2 if if the mapping h1[i] -> h2[i] can be completed to several permutations in Mat24, and not all entries
h1[i] can be covered by an octad. This may happen in case n = 6 only.

3 if if the mapping h1[i] -> h2[i] can be completed to several permutations in Mat24, and all entries h1[i]
can be covered by an octad.

If the return value is greater then zero then a suitable permutation in Mat24 is returned in the array referred by
p_out. The function computes the lowest permutation (in lexical order) that maps h1 to `h2.

Caution:

Some input mappings allow several output permutations. Changing the specification of this function such that
the same input leads to a different output permutation destroys the interoperability between different versions of
the project!!

uint32_t mat24_m24num_to_perm(uint32_t u_m24, uint8_t *p_out)
Compute permutation in the Mathieu group Mat24 from its number.

The Mathieu group has order 244823040. We assign numbers 0 <= n < 244823040 to the elements of Mat24,
in lexicographic order, with 0 the number of the neutral element. This is just a convenient way to refer to an
element of Mat24.

The function calculates the permutation with the number u_m24 and stores it in the array p_out as a mapping i
-> p_out[i]. 0 <= u_m24 < 244823040 must hold; otherwise the function fails.

The function returns 0 in case of success and (uint32_t)(-1) in case of failure.

uint32_t mat24_perm_to_m24num(uint8_t *p1)
Compute number of a permutation in the Mathieu group Mat24

This is the inverse of function mat24_m24num_to_perm().

Given a permutation i -> p1[i], 0 <= i < 24, the function returns the number n of that permutation. We
have 0 <= n < 244823040, as described in function mat24_m24num_to_perm.

The function returns garbage if p1 is not a valid permutation in Mat24. One may use function
mat24_perm_check() to check if permutation p1 is in Mat24.

void mat24_perm_to_matrix(uint8_t *p1, uint32_t *m_out)
Convert permutation in the Mathieu group Mat24 to bit matrix.

The input of the function is the permutation p: i -> p1[i], 0 <= i < 24 which must be in the Mathieu
group Mat24.
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The function computes a 12 times 12 bit matrix m, acting on a Golay code vector v (in gcode representation)
by right multiplication. Then we have v * m = p(v). Bit m[i,j] is stored in bit j of the the integer m_out[i].

Output m_out[i], 0 <= i < 12 contains garbage if p is not in Mat24.

Implementation idea:

In the standard basis of GF(2)**24, that operation corresponds to a permutation. We have precomputed a matrix
converting that standard basis to an internal basis, where Golay code words are visible, and also the inverse of
that matrix. Thus the operation is just an (optimized) sequence of matrix multiplications.

void mat24_matrix_to_perm(uint32_t *m1, uint8_t *p_out)
Convert bit matrix to permutation in the Mathieu group Mat24

This is the inverse of function mat24_perm_to_matrix()

The input m1 of the function is a bit matrix that maps a Golay code word v to p(v) = v * m1, as described in
function mat24_perm_to_matrix().

The function computes the permutation p: i -> p_out[i], 0 <= i < 24, from that matrix and stores the
result in the output vector p_out of length 24.

Output p_out[i], 0 <= i < 24 contains garbage if m1 is not bit matrix corresponding to an element of
mat24.

Implementation idea:

We could have reversed the operation of function mat24_perm_to_matrix(), but the following implememtation
is faster:

Converting rows of matrix m1 from gcode to standard representation yields the images of some Golay code
words as bit vectors. Intersecting these bit vectors in a suitable way yields the images of singletons and hence
the requestend permutation.

void mat24_matrix_from_mod_omega(uint32_t *m1)
Complete bit matrix for Mathieu group Mat24 from submatrix.

Let the input m1 of the function be a 12 times 12 bit matrix that maps a Golay code word v to p(v) = v * m1,
as described in function mat24_perm_to_matrix().

There are cases where the first 11 rows and columns of m1 can be deduced from an external source, but the
last row and column is unknown. This means the operation of an element of Mat24 on the Golay code is know
modulo the code word Omega = (1,...,1) only. This function completes such an 11 times 11 bit matrix to a
12 times 12 matrix in place.

static uint32_t dodecad_to_heptad(uint8_t *d1, uint8_t *h_out)
Compute a (unique) heptad from a dodecad.

This is a (rather technical) auxiliary function for function mat24_perm_from_dodecads

Let d1 be a dodecad as in function mat24_perm_from_dodecads().

There is a unique umbral heptad h, as defined in the documentation of function mat24_perm_from_heptads(),
satisfying the properties described below.

The function evaluates the first 9 elements d1[i], 0 <= i < 9. It fails if these elements are not a subset of a
dodecad or not pairwise disjoint.

The function returns 0 in case of success and (uint32_t)(-1) in case of failure.

Properties of heptad h:

h contains d1[i] for 0 <= i < 5 and also the unique element h_5 in the intersection of d1 and the syndrome
S5 of the set (d1[i], 0 <= i < 5).
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Let S5 = (h_5, h_6, h_7) such that Mat24 contains a mapping that maps i to d1[i] for i < 5 and i to
h_i for i = 5, 6, 7. This determines h_6 uniquely. Then h_6 is not in the dodecad d1. Let T be the tetrad
containing the set (d1[0], d1[1], d1[2], h_6). Tetrad T contains exactly one set U intersecting d1 in 3
elements disjoint to (d1[i], 0 <= i < 5). Then heptad h contains the element d_7 of the singleton U \ d1
as ts distinguished element.

The function puts h_out[i] = d1[i] for 0 <= i < 5 and h_out[5] = h_5, h_out[6] = d_7.

uint32_t mat24_perm_from_dodecads(uint8_t *d1, uint8_t *d2, uint8_t *p_out)
Find permutation in Mat24 mapping one dodecad to another.

A dodecad is a word of the Golay code of weight 12. Given two dodecads d1, d2, and five elements d1[0],
...,d1[4] of d1, and also five elements d2[0],...,d2[4] of d2, there is a unique permutation p in Mat24
with the following properties:

d1 is mapped to d2 ,

d1[i] is mapped to d2[i] for 0 <= i < 5 .

On input the function takes two dodecads d1, d2 as arrays of integers, and it computes a permutation p: i ->
p_out[i] satisfying the properies given above. In case of success it stores p in the array p_out. Only the first 9
elements d1[i], d2[i], 0 <= i < 9 of d1 and d2 are evalutated. There is at most one dodecad containing
d1[i], 0 <= i < 9 and at most one dodecad containing d2[i], 0 <= i < 9, assuming d1[i] != d1[j]
and d2[i] != d2[j] for i != j.

The function fails if the evaluated entries of d1 or of d2 are not a subset of a dodecad or not pairwise disjoint.

The function returns 0 in case of success and (uint32_t)(-1) in case of failure.

The implementation calls function dodecad_to_heptad() for contructing (unique) heptads h1 and h2 from d1
and d2. Then it calls function mat24_perm_from_heptads() for computing the unique permutation in Mat24 that
maps h1 to h2.

uint32_t mat24_op_vect_perm(uint32_t v1, uint8_t *p1)
Apply a permutation in the Mathieu group Mat24 to a bit vector.

Apply the permutation p: i -> p1[i] to the bit vector v1. This maps bit i of v1 to bit p1[i] of the returned
result.

uint32_t mat24_op_gcode_matrix(uint32_t v1, uint32_t *m1)
Apply a 12 times 12 bit matrix to a Golay code vector.

A matrix 12 times 12 bit matrix m must be encoded in the input parameter m1 as specified in function
mat24_perm_to_matrix(). The function returns the matrix product v1 * m as bit vector. Input v1 and the return
value are Golay code words given in gcode representation.

uint32_t mat24_op_gcode_perm(uint32_t v1, uint8_t *p1)
Apply a permutation in the group Mat24 to a Golay code vector.

Apply the permutation p: i -> p1[i] (which must be an element of the Mathieu group Mat24) to the Golay
code word v1, with v1 given in gcode representation.

The function returnes the permuted Golay code word in gcode representation.

uint32_t mat24_op_cocode_perm(uint32_t c1, uint8_t *p1)
Apply a permutation in the group Mat24 to a Golay cocode element.

Apply the permutation p: i -> p1[i] (which must be an element of the Mathieu group Mat24) to the Golay
cocode element c1, with c1 given in cocode representation.

The function returnes the permuted cocode word in cocode representation.
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void mat24_mul_perm(uint8_t *p1, uint8_t *p2, uint8_t *p_out)
Compute product of two permutations in the Mathieu group Mat24

Here inputs p1, p2 must be permutations represented as mappings i -> p1[i], i -> p2[i]. The func-
tion computes the product p1 * p2 and stores it in the array p_out in the same form. Thus p_out[i] =
p2[p1[i]].

Input errors are not detected, but output buffer overflow is prevented. Any overlap between p1, p2, and p_out
is possible.

void mat24_inv_perm(uint8_t *p1, uint8_t *p_out)
Compute the inverse of a permutation in the Mathieu group Mat24

Here input p1 must be a permutation represented as mapping i -> p1[i]. The function computes the inverse
of p1 and stores it in the array p_out in the same form. Thus p_out[p1[i]] = i.

Input errors are not detected, but output buffer overflow is prevented. Any overlap between p1 and p_out is
possible.

void mat24_autpl_set_qform(uint32_t *m_io)
Auxiliary function for function mat24_perm_to_autpl()

Given a Parker loop autmorphism a, the function computes a quadratic form qf on the Golay code defined as
follows:

qf(g[i]) = 0 for all basis vectors g[i] of the standard basis of the Golay code. Furthermore we have

qf(v1 + v2) = qf(v1) + qf(v2) + b(v1, v2) ,

where b is a bilinear form on the Golay code defined by

b(x,y) = theta(p(x), p(y)) + theta(x, y) (mod 2).

Here p is the element of the group Mat24 obtained by taking the automorphism amodulo sign, and theta is the
cocycle of the Parker loop. Then b is an alternating bilinear form by [Seys20], Lemma 4.1.

Let b[i,j] = b(g[i], g[j]) where g[i] is the i-th basis vector of the Golay code in our selected standard
basis.

Input m_io represents the Parker loop automorphism a as documented in function mat24_perm_to_autpl(). Here
we modify the array m_io by storing the bit b[i,j] in bit 13+j of entry m_io[i] for i > j.

So the quadratic form qf is now also stored in the array m_io representing the automorphsm a. As explained in
[Seys20] this facilitates computation in the automorphism group of the Parker loop.

void mat24_perm_to_autpl(uint32_t c1, uint8_t *p1, uint32_t *m_out)
Construct a Parker loop automorphism.

The function combines a cocode element c1 and a permutation p in the Mathieu group Mat24 to a Parker loop
automorphism. Here c1 must be given in cocode representation. Permutation p must be given as a mapping i
-> p1[i], 0 <= i < 24.

Up to sign, the image of an element of the Parker loop is the corresponding Golay code vector permuted by the
permutation p. The sign of the image of the i-th positive basis vector of the Parker loop is given by bit i of c1.
This determines the automorphism uniqely. We will write AutPL(c1, p) for that automorphism.

The function returns the automorphism AutPL(c1, p) as an array m_out of 12 integers of type uint32_t. The
lowest 13 bits of m_out[i] contain the image of the i-th positive basis vector. Here each image is encoded as a
Parker loop element as in function mat24_mul_ploop.
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We also compute a quadratic form in the higher bits of the entries

of m_out, as described in function mat24_autpl_set_qform(). This facilitates computations in the automorphism
group of the Parker loop.

Let Id be the neutral element in Mat24. Then we have

AutPL(c1, p) = AutPL(c1, Id) * AutPL(0, p) .

void mat24_cocode_to_autpl(uint32_t c1, uint32_t *m_out)
Compute a diagonal Parker loop automorphism.

The function converts a cocode element c1 to a Parker loop automorphism. Here c1 must be given in cocode
representation. Such an automorphism is called a diagnonal asutomorphism; it changes the signs of the Parker
loop elements only.

The resulting automorphism is stored in m_out in the same way as in function mat24_cocode_to_autpl().

If p0 is an array representing the neutral element of the group Mat24 then mat24_cocode_to_autpl(cl,
m_out) is equivalent to mat24_perm_to_autpl(c1, p0, m_out).

void mat24_autpl_to_perm(uint32_t *m1, uint8_t *p_out)
Extract permutation from Parker loop automorphism.

Ignoring the signs of the Parker loop, an automorphism m1 of the Parker loop is an automorphism of the Golay
code and can be represented as a permutation in the Mathieu group Mat24. Here m1must be encoded as described
in function mat24_perm_to_autpl().

The function computes the permutation in the group Mat24 corresponding the automorphism m1 and returns it
in p1 as a mapping i -> p1[i].

uint32_t mat24_autpl_to_cocode(uint32_t *m1)
Extract cocode element from Parker loop automorphism.

Given an automorphism m1 of the Parker loop, as constructed by function mat24_perm_to_autpl(), the function
returns a cocode element c in cocode representation. Element c has the following property:

Let p be the permutation in Mat24 obtained from m1 by calling mat24_autpl_to_perm(m1, p). Then calling
mat24_perm_to_autpl(c, p, m2), where m2 is a suitable array, constructs a copy m2 of m1 from c and p.

uint32_t mat24_op_ploop_autpl(uint32_t v1, uint32_t *m1)
Apply a Parker loop automorphism to a Parker Loop element.

Apply Parker loop automorphism m1 to Parker Loop element v1 and return the result as a Parker Loop element.

Here m1 is a Parker loop autmorphism as constructed by function mat24_perm_to_autpl(). v1 and the return
value is an element of the Parker loop, encoded as in function mat24_mul_ploop().

void mat24_mul_autpl(uint32_t *m1, uint32_t *m2, uint32_t *m_out)
Compute the product of two Parker Loop automorphisms.

Given two Parker Loop automorphism m1, m2 the function computes m1 * m2 and stores the result in m_out.
All Parker loop automorphisms are encoded as in function mat24_perm_to_autpl().

For an element a of the Parker loop we have m_out(a) = m2(m1(a)).

void mat24_inv_autpl(uint32_t *m1, uint32_t *m_out)
Compute the inverse of a Parker Loop automorphisms.

Given a Parker Loop automorphism m1 the function computes the inverse of m1 and stores the result in m_out.
All Parker loop automorphisms are encoded as in function mat24_perm_to_autpl().
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void mat24_perm_to_iautpl(uint32_t c1, uint8_t *p1, uint8_t *p_out, uint32_t *m_out)
Compute inverse Parker Loop automorphism from permutation.

This is equivalent to

mat24_inv_perm(p1, p_out);
mat24_perm_to_autpl(c1, p1, m_temp);
mat24_inv_autpl(m_temp, m_out);

The function saves some intermedate steps so that it is faster.

void mat24_perm_to_net(uint8_t *p1, uint32_t *a_out)
Compute modified Benes network for permutation of 24 entries.

The Benes network is computed for the permutation p: i -> p1[i]. The network consists of 9 layers. The
returned array a_out of length 9 describes that network. In layer i, entry j is to be exchanged with entry j +
d[i], if bit j of the value a_out[i] is set. Here d[i] = 1,2,4,8,16,8,4,2,1 for i = 0,...,8. For all
such exchange steps we have j & d[i] == 0. We also assert that no entry with index >=24 will be touched.

void mat24_op_all_autpl(uint32_t *m1, uint16_t *a_out)
Auxiliary function for computing in the monster.

The function is used for applying the automorphism m1 of the Parker loop to a vector of the 196884-dimensional
representation of the monster. m1 is encoded as in function mat24_perm_to_autpl().

It computes a table a_out[i], i = 0,...,0x7ff, such that (a_out[i] & 0x7ff) is the image m1(i) of
the Parker loop element imodulo the center of the Parker loop. Signs are stored in bits 12,...,14 of a_out[i]
as follows:

Bit 12: (sign of m1(i)) ^ (odd & P(i))

Bit 13: (sign of m1(i))

Bit 14: (sign of m1(i)) ^ (bit 11 of m1(i))

Here odd is the parity of the automorphism, and P() is the power map of the Parker loop.

void mat24_op_all_cocode(uint32_t c1, uint8_t *a_out)
Auxiliary function for computing in the monster.

This is a simplified version of function mat24_op_all_autpl(), which is used for applying the diagonal automor-
phism c1 of the Parker loop (encoded in cocode representation) to a vector of a representation of the monster.

The function computes a table a_out[i], i= 0,...,0x7ff, containing the signs related to this operation as
follows:

Bit 0: (sign of c1(i)) ^ (odd & P(i))

Bit 1: (sign of c1(i))

Bit 2: same as bit 1

Here odd and P() are as in function mat24_op_all_autpl().
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C functions for generating random elements of 𝑀24

File mat24_random.c contains the C implementations of the functions for generation random elements of some sub-
groups of the Mathieu group 𝑀24.

Equivalent python function are coded in module mmgroup.tests.test_mat24.test_mat24_rand.

A subgroup of 𝑀24 is decribed by an integer of type uint_32_t encoding a bit mask. Each bit in that mask encodes a
certain subgroup of 𝑀24. By combining several bits with bitwise pr we may evcode the intersection of the subgroups
corresponding to the bits being set.

The mapping of the bits to the subgroups is given in the description of the enum type mat24_rand_flags in file
mat24_functions.h.

Functions

uint32_t mat24_complete_rand_mode(uint32_t u_mode)
Complete an intersection of subgroups of 𝑀24.

Here the integer u_mode is a combination of flags of type enum mat24_rand_flags describing an intersection
𝐻 of subgroups of 𝑀24. Then the group 𝐻 may be contained in more subgroups of 𝑀24 encoded as bits of
an integer of type enum mat24_rand_flags. This function sets all bits in u_mode corresponding to groups
containing 𝐻 . Furthermore, the function clears all unused bits in parameter u_mode.

The function returns the modified parameter u_mode.

int32_t mat24_perm_in_local(uint8_t *p1)
Compute some subgroups containing an element of 𝑀24.

Let 𝑝1 be a permutation in 𝑀24 given as an array of 24 integers. The function computes a set of subgroups
of 𝑀24 containing 𝑝1. These computations are done for all subgroups corresponding to the flags defined in
enum mat24_rand_flags. The function returns an integer mode that is the combination of flags of type enum
mat24_rand_flags describing the subgroups of 𝑀24 containing 𝐻 .

The function returns -1 if 𝑝1 is not in 𝑀24.

int32_t mat24_perm_rand_local(uint32_t u_mode, uint32_t u_rand, uint8_t *p_out)
Generate a random element of a subgroup of 𝑀24.

The function generates an element of a subgroup 𝐻 of the Mathieu group 𝑀24. Here the parameter u_mode is a
combination of flags of type enum mat24_rand_flags describing the group 𝐻 as an intersection of subgroups
of 𝑀24. The generated permutation is stored in the array p_out of length 24.

Parameter u_rand is an integer describing the element of subgroup 𝐻 to be generated. Here u_rand is reduced
modulo the order of 𝐻 . In order to generate a uniform random element of 𝐻 , the user should generate a uniform
random number 0 <= u_rand < MAT24_ORDER, where MAT24_ORDER is the order of the group 𝑀24.

The function returns 0 in case of success and -1 in case of failure.

int32_t mat24_m24num_rand_local(uint32_t u_mode, uint32_t u_rand)
Generate number of random element of a subgroup of 𝑀24.

The function generates an element of a subgroup 𝐻 of the Mathieu group 𝑀24. Here the parameters u_mode
and and u_rand are as in function mat24_perm_rand_local.

The function returns the number of the generated element of 𝑀24 in case of success and -1 in case of failure.

See function mat24_m24num_to_perm for the numbering of the elements of 𝑀24.
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int32_t mat24_m24num_rand_adjust_xy(uint32_t u_mode, uint32_t v)
Make an element of the Parker loop compatible with a subgroup.

Here parameter v is an element 𝑑 of the Parker loop encoded as in file mat24.c. Parameter u_mode describes a
subgroup of the Mathieu group 𝑀24 as in function mat24_perm_rand_local.

Eventually, we want to construct random elements in a larger group then 𝑀24. For some values of u_mode we
want to use additional generators corresponding to a subloop of the Parker loop. Here the details are dictated by
the 2-local structure of the Monster.

If u_mode is set so that one or more Golay cocode vectors of weight 2 are fixed pointwise then we require the
scalar product of 𝑑with all these fixed weight-2 vectors to be zero. The function modifies the Parker loop element
𝑑 appropriately and returns the modified element.

3.2.13 Generating C code for the mmgroup.mat24 extension

In this section we give a brief overview over the modules in mmgroup.dev.mat24 used for generating C code for the
mmgroup.mat24 extension.

Module mat24_ref

Module mat24_ref contains the class Mat24.

Class Mat24 in module mmgroup.dev.mat24.mat24_ref is the table-providing class used by the code generator to
generate the C file mat24_functions.c. That C file contains the functionality of the python extension mmgroup.
mat24. Class Mat24 may also be used as a table-providing class for generating other C files.

Class Mat24 also exports the same functions as the mmgroup.mat24 extension as class methods. So it can be used for
testing that extension and also as a pure-python substitute for that extension.

Class Mat24 is based on class mat24tables.Mat24Tables. It also uses classes, functions and tables from the fol-
lowing modules in mmgroup.dev.mat24:

• make_addition_table, make_mul_transp, mat24aux, mat24heptad, mat24theta

Module mat24tables

Module mat24tables contains the class Mat24Tables

Class Mat24Tables is a base for class Mat24 in module mmgroup.dev.mat24.mat24_ref. It contains the basis of
the Golay code and of (a set of representatives of) the Golay cocode. It also contains tables for fast conversion of a
vector in V = GF(2)**24 from the standard to the internal representation and vice versa. That class also contains a
table of the syndromes of all 2048 odd elements of the cocode. The 759 octads, i.e. Golay code word of length 8 are
numbered from 0 to 758. Class Mat24Tables provides tables for computing the number of a octad from a Golay code
word representing an octad and vice versa.

Class Mat24Tables also contains python versions of some C functions in file mat24_functions.c using these tables.
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Module mat24aux

The module contains classes Lsbit24Function and MatrixToPerm.

Class Lsbit24Function contains tables and directives for computing the least significant bit of a 24-bit integer
using a DeBruijn sequence. This may be overkill for such a simple function, but it may also be considered as a didactic
example of a table-providing class.

Class MatrixToPerm contains a directive that generates highly optimized code for converting a bit matrix acting on
a Golay code word to a permutation in the Mathieu group Mat_24. Here we assume the bit matrix actually encodes
an element of the Mathieu group; otherwise garbage is returned. The Golay code word must be given as an integer in
gcode representation.

Module mat24heptad

Support for completing a permutation in the Mathieu group

A heptad is s subset of seven elements of the set on which that Mathieu group acts. Under certain circum-
stances a mapping from one heptad to another heptad can be completed to a unique element of mat_24. The C
function mat24_perm_from_heptads in file mat24_functions.c performs that task. It calls a simpler function
mat24_perm_complete_heptad in that file which completes a mapping from a fixed heptad to variable heptad.

This file contains python implementations of functions mat24_perm_complete_heptad and
mat24_perm_from_heptads.

The C function mat24_perm_to_m24num maps the elements of the Mathieu group Mat_24 to the set if integers
0, ..., order(Mat_24). Function mat24_perm_complete_heptad is also used as a subroutine of function
mat24_m24num_to_perm which compute the inverse of that mapping. This module also contains python implemen-
tations of these functions.

Class HeptadCompleter is a table-providing class that is used for code generation. It also exports the functionality of
this module.

Function hint_for_complete_heptads prints an explanation of the implementation of function
mat24_perm_complete_heptad, including some precalulated data required for that implementation.

Function test_complete_octad test the correcteness of function mat24_perm_complete_heptad. Here it suffices
to check that the identity permutation is generated correctly from the required input values, and that the intersections
of (possibly complemented) octads and syndromes are indeed singletons if the ought to be singletons.

Module make_addition_table

The module contains class BitMatrixMulFix.

Class BitMatrixMulFix contains a directive that generates code to multiply a fixed bit matrix with a variable bit
matrix.

The C function mat24_perm_to_matrix uses this kind of matrix multiplication to convert a permutation in the Math-
ieu group to a bit matrix operating on a Golay code word.
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Module make_mul_transp

The module contains class BitMatrixMulTransp.

Class BitMatrixMulTransp contains a directive that generates code to multiply a bit vector with the transposed matrix
of a fixed bit matrix. Depending on the size of the matrix and the bit length of the underlying integer type, several bit
vectors can be multiplied with the same matrix simultaneously.

The C function mat24_autpl_set_qform uses that matrix multiplication, see section Implementing Automorphisms
of the Parker loop in the Guide for developers for background.

3.3 Description of the mmgroup.generators extension

Module generators contains the definition of the generators of the monster, so that they may be used in C files. It
also contains support for the subgroups 𝑁0 of structure 22+11+2·11.(Sym3 ×𝑀24) and 𝐺𝑥0 of structure 21+24.Co1 of
the monster, as described in [Con85] and [Sey20]. Here 𝑀24 is the Mathieu group acting on 24 elements, and Co1 is
the automorphism group of the 24-dimensional Leech lattice modulo 2.

Here we fully support the computation in the subgroup 𝑁0 based on the generators defined in this module, so that a
word in the generators of 𝑁0 can easily be reduced to a standard form.

We also support the operation of the group 𝐺𝑥0 on the Leech lattice mod 2 and mod 3 (in some cases up to sign only).
For a full support of the subgroup 𝐺𝑥0 we also have to compute in a Clifford group, which is implemented in module
clifford12.

Our set of generators of the monster group is defined in section The Monster group. The C implementation of this set
of generators is defined in section Header file mmgroup_generators.h.

The intersection 𝑁0 ∩𝐺𝑥0 is a group 𝑁𝑥0 of structure 21+24.211.𝑀24. The group 𝑀24 (and, to some extent, also the
group 𝑁𝑥0) is supported by the C functions in file mat24_functions.c.

3.3.1 The Leech lattice and the extraspecial group 𝑄𝑥0

Let 𝑄𝑥0 the normal subgroup of 𝐺𝑥0 of structure 21+24. Then 𝑄𝑥0 is an extraspecial 2 group and also a normal
subgroup of 𝐺𝑥0. Let Λ be the Leech lattice. The quotient of 𝑄𝑥0 by its center {±1} is isomorphic to Λ/2Λ, which is
the Leech lattice modulo 2.

For 𝑒𝑖 ∈ 𝑄𝑥0 let 𝑒𝑖 be the vector in the Leech lattice (mod 2) corresponding to ±𝑒𝑖. Then 𝑒21 = (−1)𝑠 for 𝑠 =
⟨𝑒1, 𝑒1⟩/2, where ⟨., .⟩ is the scalar product in the Leech lattice. For the commutator [𝑒1, 𝑒2] we have [𝑒1, 𝑒2] = (−1)𝑡,
𝑡 = ⟨𝑒1, 𝑒2⟩.

3.3.2 Leech lattice encoding of the elements of 𝑄𝑥0

An element of of 𝑄𝑥0 can be written uniquely as a product 𝑥𝑑 · 𝑥𝛿 , 𝑑 ∈ 𝒫, 𝛿 ∈ 𝒞*, see [Sey20], section 5. Here 𝒫 is
the Parker loop and 𝒞* is the Golay cocode. We encode the element 𝑥𝑑 · 𝑥𝛿 of 𝑄𝑥0 as an integer 𝑥 as follows:

𝑥 = 212 · 𝑑⊕ (𝛿 ⊕ 𝜃(𝑑)) .

Here elements of the Parker loop and elements of the cocode are encoded as integers as in section The Parker loop and
The Golay code and its cocode. 𝜃 is the cocycle given in section The basis of the Golay code and of its cocode, and
‘⊕’ means bitwise addition modulo 2. Note that a Parker loop element is 13 bits long (with the most significant bit
denoting the sign) and that a cocode element is 12 bits long.
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From this representation of 𝑄𝑥0 we obtain a representation of a vector in the Leech lattice modulo 2 by dropping sign
bit, i.e. the most significant bit at position 24. A vector addition in the Leech lattice modulo 2 can be done by applying
the XOR operator ^ to the integers representing the vectors, ignoring the sign bit.

3.3.3 Special elements of the group 𝑄𝑥0

We write Ω for the positive element of the Parker loop such that Ω̃ is the Golay code word (1, . . . , 1) as in [Con85]
and [Sey20]. In this specifiction we also write Ω for the element 𝑥Ω of 𝑄𝑥0 and for the element �̃�Ω of the Leech lattice
modulo 2 if the domain of Ω is clear from the context. Then Ω has Leech lattice encoding 0x800000 in our chosen
basis of the Golay code; and the element Ω of Λ/2Λ corresponds to the standard coordinate frame of the real Leech
lattice.

For fast computations in the monster group it is vital to compute in the centralizer of a certain short element 𝑥𝛽 of 𝑄𝑥0,
where 𝛽 is an even coloured element of the Golay cocode, as described in [Sey20]. Here we choose the cocode element
𝛽 corresponding to the element (0, 0, 1, 1, 0, . . . , 0) of GF24

2 . Then the centralizer of 𝑥𝛽 is isomorphic to the a double
cover baby monster group and contains the generators 𝜏 and 𝜉 of the monster. We also write 𝛽 for the element 𝑥𝛽 of
𝑄𝑥0 and for the element �̃�𝛽 of Λ/2Λ in the same way as for the element Ω. Then 𝛽 has Leech lattice encoding 0x200
in our chosen basis.

Module gen_leech_reduce.c contains functions for rotating arbitrary type-4 vectors in Λ/2Λ to Ω and for rotating
arbitrary type-2 vectors in Λ/2Λ to 𝛽.

3.3.4 Computations in the Leech lattice modulo 3

For the construction of the subgroup 𝐺𝑥0 of the monster we also require the automorphism group Co0 of the real Leech
lattice, as decribed in [Con85]. That group has a faithful representation as an automophism group of Λ/3Λ, but not of
Λ/2Λ. Module gen_leech3.c provides functions for computing in the Leech Lattice modulo 3.

Note that in [Sey20] the operation of the generators 𝑥𝑑, 𝑦𝑑, 𝑥𝛿, 𝑥𝜋, 𝜉 of 𝐺𝑥0 is also defined on the real Leech lattice.

3.3.5 Header file mmgroup_generators.h

The header file mmgroup_generators.h contains definitions for the C files in the generator extension. This exten-
sion comprises files mm_group_n.c, gen_xi_functions.c, and gen_leech.c.

In this header we also define an enum MMGROUP_ATOM_TAG_ that specifies the format of an atom that acts as a generator
of the monster group.

Defines

MMGROUP_ATOM_TAG_ALL

Tag field of a monster group atom

MMGROUP_ATOM_DATA

Data field of a monster group atom

gen_leech2_def_mul(x1, x2, result)
Macro version of function gen_leech2_mul.

Macro gen_leech2_def_mul(x1, x2, result) is equivalent to the statement result =
gen_leech2_mul(x1, x2). The macro generates a sequence of statements!
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Caution:

Here result must be an integer lvalue that is different from both integers, x1 and x2!

Enums

enum MMGROUP_ATOM_TAG_
In this header file we also define the tags for the atoms generating the Monster group. An element of the mon-
ster group is represented as an array of integers of type uint32_t, where each integer represents an atom, i.e.
an atomic element of the monster. An atom represents a triple (sign, tag, value), and is encoded in the
following bit fields of an unsigned 32-bit integer:

Bit 31 | Bit 30,...,28 | Bit 27,...,0
--------|----------------|----------------
Sign | Tag | Value

Standard tags and values are defined as in the constructor of the Python class mmgroup.mm, see section The
monster group in the API reference. If the sign bit is set, this means that the atom bit given by the pair (tag,
value) has to be inverted. In ibid., a tag is given by a small letter. These small letters are converted to 3-bit
numbers as follows:

Tag | Tag number | Range of possible values i
-----|------------|----------------------------
'd' | 1 | 0 <= i < 0x1000
'p' | 2 | 0 <= i < 244823040
'x' | 3 | 0 <= i < 0x2000
'y' | 4 | 0 <= i < 0x2000
't' | 5 | 0 <= i < 3
'l' | 6 | 0 <= i < 3

A tag with tag number 0 is interpreted as the neutral element. A tag with tag number 7 is illegal (and reserved
for future use).

Tags with other letters occuring in the constructor of class MM are converted to a word of atoms with tags taken
from the table above.

For tags ‘t’ and ‘l’ the values 0 <= i <= 3 are legal on input.

Values:

enumerator MMGROUP_ATOM_TAG_1
Tag indicating the neutral element of the group

enumerator MMGROUP_ATOM_TAG_I1
Tag indicating the neutral element of the group

enumerator MMGROUP_ATOM_TAG_D
Tag corresponding to ‘d’

enumerator MMGROUP_ATOM_TAG_ID
Tag corresponding to inverse of tag ‘d’
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enumerator MMGROUP_ATOM_TAG_P
Tag corresponding to ‘p’

enumerator MMGROUP_ATOM_TAG_IP
Tag corresponding to inverse of tag ‘p’

enumerator MMGROUP_ATOM_TAG_X
Tag corresponding to ‘x’

enumerator MMGROUP_ATOM_TAG_IX
Tag corresponding to inverse of tag ‘x’

enumerator MMGROUP_ATOM_TAG_Y
Tag corresponding to ‘y’

enumerator MMGROUP_ATOM_TAG_IY
Tag corresponding to inverse of tag ‘y’

enumerator MMGROUP_ATOM_TAG_T
Tag corresponding to ‘t’

enumerator MMGROUP_ATOM_TAG_IT
Tag corresponding to inverse of tag ‘t’

enumerator MMGROUP_ATOM_TAG_L
Tag corresponding to ‘l’

enumerator MMGROUP_ATOM_TAG_IL
Tag corresponding to inverse of tag ‘l’

3.3.6 C functions implementing the group 𝑁0

We describe an implementation of the subgroup 𝑁0 of the monster group.

The subgroup𝑁0 of the monster group of structure 22+11+2·11.(Sym3×M24) has been described in [Con85]. Theorem
5.1 in [Sey20] reduces the group operation in 𝑁0 to easy calculations in the Parker loop 𝒫 , the Colay cocode 𝒞*, and
the group AutSt𝒫 of standard automorphisms of 𝒫 . The loops 𝒫 , 𝒞*, and AutSt𝒫 are described in section Basic
structures. Module mat24_functions.c provides the required functions for computing in these loops.

Using the notation in section The Monster group we may describe an element of 𝑁0 as a product:

𝜏 𝑡𝑦𝑓𝑥𝑒𝑥𝛿𝑥𝜋 ; 0 ≤ 𝑡 < 3; 𝑒, 𝑓 ∈ 𝒫; 𝛿 ∈ 𝒞*; 𝜋 ∈ AutSt𝒫 .

This representation is unique if we require 𝑓 to be in a transversal of 𝒫/𝑍(𝒫) and 𝜋 to be a standard representative in
AutSt𝒫 as described in section Automorphisms of the Parker loop.

We store an element of 𝑁0 an a quintuple 𝑡, 𝑓, 𝑒, 𝛿, 𝜋 of five integers of type uint32_t. For 𝑓, 𝑒 we use the numbering
in class PLoop in module mmgroup; for 𝛿 we use the numbering in class Cocode in module mmgroup. Here 𝜋 refers to
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a standard representative in AutSt𝒫 . These standard representatives correspond to the elements of the Mathieu group
M24; and we use the numbering of the elements of M24 described in class AutPL| in module mmgroup.

Most functions in module mm_group_n.c take a pointer to a 5-tuple (𝑡, 𝑓, 𝑒, 𝛿, 𝜋) representing an element 𝑔 of the 𝑁0

as their first argument. Then the tuple representing 𝑔 is modified to a tuple representing an element 𝑔2 = 𝑔 · 𝑔1, with
the element 𝑔1 of 𝑁 given by one or more subsequent arguments of the function.

The functions in module mm_group_n.c may cause some overhead due to the fact that element of the Mathieu group
M24 is represented as an integer. But compared to an operation of the monster group on its 196884-dimensional that
overhead is negligible.

C interface for file mm_group_n.c

The functions in file mm_group_n.c implement the subgroup 𝑁0 of structure 22+11+2·11.(Sym3 × Mat24) on the
monster group. Elements of𝑁0 are represented as arrays of five integers of type uint32_t as described in the document
The C interface of the mmgroup project.

Functions

void mm_group_n_mul_delta_pi(uint32_t *g, uint32_t delta, uint32_t pi)
Multiply 𝑔 ∈ 𝑁0 with 𝑥𝛿𝑥𝜋 .

Put 𝑔 = 𝑔𝑥𝛿𝑥𝜋 . Here the integer 𝛿 represents an element of the Golay cocode and 𝜋 is the number of an element
of 𝑀24 corresponding to a standard representative in the automorphism group AUT(PL) of the Parker loop.

𝑔 is given as an array of five 32-bit integers.

void mm_group_n_mul_inv_delta_pi(uint32_t *g, uint32_t delta, uint32_t pi)
Multiply 𝑔 ∈ 𝑁0 with (𝑥𝛿𝑥𝜋)−1.

Put 𝑔 = 𝑔 · (𝑥𝛿𝑥𝜋)−1. Here 𝑔, 𝑥𝛿 , and 𝑥𝜋 are as in function mm_group_n_mul_delta_pi.

void mm_group_n_mul_x(uint32_t *g, uint32_t e)
Multiply 𝑔 ∈ 𝑁0 with 𝑥𝑒.

Put 𝑔 = 𝑔 · 𝑥𝑒. Here the integer 𝑒 represents an element of the Parker loop.

𝑔 is given as an array of five 32-bit integers.

void mm_group_n_mul_y(uint32_t *g, uint32_t f)
Multiply 𝑔 ∈ 𝑁0 with 𝑦𝑓 .

Put 𝑔 = 𝑔 · 𝑦𝑓 . Here the integer 𝑓 represents an element of the Parker loop.

𝑔 is given as an array of five 32-bit integers.

void mm_group_n_mul_t(uint32_t *g, uint32_t t)
Multiply 𝑔 ∈ 𝑁0 with the triality element.

Put 𝑔 = 𝑔 · 𝜏 𝑡, where 𝜏 is the triality element. 𝑔 is given as an array of five 32-bit integers.

void mm_group_n_clear(uint32_t *g)
Set 𝑔 ∈ 𝑁0 to the value of the neutral element.

Put 𝑔 = 1. Element 𝑔 of 𝑁0 is given as an array of five 32-bit integers.

void mm_group_n_copy_element(uint32_t *g_1, uint32_t *g_2)
Copy the element 𝑔1 of 𝑁0 to 𝑔2.

Elements 𝑔1, 𝑔2 of 𝑁0 are given as arrays of five 32-bit integers.
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void mm_group_n_mul_element(uint32_t *g_1, uint32_t *g_2, uint32_t *g_3)
Multiply elemnts of the group 𝑁0.

Put 𝑔3 = 𝑔1 · 𝑔2. Elements 𝑔1, 𝑔2, 𝑔3 of 𝑁0 are given as an array of five 32-bit integers.

These arrays may overlap.

void mm_group_n_mul_inv_element(uint32_t *g_1, uint32_t *g_2, uint32_t *g_3)
Multiply 𝑔1 ∈ 𝑁0 with 𝑔−1

2 ∈ 𝑁0.

Put 𝑔3 = 𝑔1 · 𝑔−1
2 . Elements 𝑔1, 𝑔2, 𝑔3 of 𝑁0 are given as arrays of five 32-bit integers.

These arrays may overlap.

void mm_group_n_inv_element(uint32_t *g_1, uint32_t *g_2)
Invert an element 𝑔1 of 𝑁0.

Put 𝑔2 = 𝑔−1
1 . Elements 𝑔1, 𝑔2 of 𝑁0 are given as arrays of five 32-bit integers.

These arrays may overlap.

void mm_group_n_conjugate_element(uint32_t *g_1, uint32_t *g_2, uint32_t *g_3)
Conjugate 𝑔1 ∈ 𝑁0 with 𝑔2 ∈ 𝑁0.

Put 𝑔3 = 𝑔−1
2 · 𝑔1 · 𝑔2. Elements 𝑔1, 𝑔2, 𝑔3 of 𝑁0 are given as arrays of five 32-bit integers.

These arrays may overlap.

uint32_t mm_group_n_mul_word_scan(uint32_t *g, uint32_t *w, uint32_t n)
Multiply 𝑔 ∈ 𝑁0 with an element of the monster.

Let w be a word of generators of the monster group of length n. Let k be the greatest number such that all prefixes
of w of length at most k are in the group 𝑁0. Let 𝑎 be the element of 𝑁0 corresponding to the prefix of w of
length k.

Let 𝑔 ∈ 𝑁0 is given as an array g of five 32-bit integers.

Then the function replaces the value 𝑔 in the array g by 𝑔 · 𝑎. It returns the number k of atoms of the word w
processed.

uint32_t mm_group_n_mul_atom(uint32_t *g, uint32_t atom)
Multiply 𝑔 ∈ 𝑁0 with an atom.

Put 𝑔 = 𝑔 · 𝑎. Here 𝑎 is the generator of the group 𝑁0 given by parameter atom as described in the header file
mmgroup_generators.h.

𝑔 is given as an array of five 32-bit integers.

The function returns 0 in case of success and the (possibly simplified) atom in case of failure.

uint32_t mm_group_n_scan_word(uint32_t *w, uint32_t n)
Scan word of generators of the monster for membership in 𝑁0.

Let w be a word of generators of the monster group of length n. The function returns the greatest number k such
that all prefixes of w of length at most k are in the group 𝑁0.

uint32_t mm_group_n_conj_word_scan(uint32_t *g, uint32_t *w, uint32_t n)
Conjugate 𝑔 ∈ 𝑁0 with an element of the monster.

Let w be a word of generators of the monster group of length n. Let k be the greatest number such that all prefixes
of w of length at most k are in the group 𝑁0. Let 𝑎 be the element of 𝑁0 corresponding to the prefix of w of
length k.

Let 𝑔 ∈ 𝑁0 is given as an array g of five 32-bit integers.
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Then the function replaces the value 𝑔 in the array g by 𝑎−1 · 𝑔 · 𝑎. It returns the number k of atoms of the word
w processed.

uint32_t mm_group_n_reduce_element(uint32_t *g)
Reduce 𝑔 ∈ 𝑁0 to a standard form.

The representation of 𝑔 is reduced to a standard form.

Technically, we reduce the product 𝑦𝑓𝑥𝑒 to 𝑦𝑓 ′𝑥𝑒′ , such that 0 ≤ 𝑓 ′ < 0x800 holds. If 𝑥𝑒 is in the center of the
Parker loop, but 𝑥𝑓 is not in that center then we put 𝑥𝑒′ = 0.

𝑔 is given as an array of five 32-bit integers.

uint32_t mm_group_n_reduce_element_y(uint32_t *g)
Reduce 𝑔 ∈ 𝑁0 to a standard form.

The representation of 𝑔 is reduced to a standard form.

Here we reduce the product 𝑦𝑓𝑥𝑒 to 𝑦𝑓 ′𝑥𝑒′ , such that 0 ≤ 𝑓 ′ < 0x800 always holds.

𝑔 is given as an array of five 32-bit integers.

uint32_t mm_group_n_to_word(uint32_t *g, uint32_t *w)
Convert 𝑔 ∈ 𝑁0 to a word of generators.

The representation of 𝑔 is converted to a word of generators of the monster group. The entries of that word
are stored in the buffer referred by parameter w. The entries of that word are encoded as described in file
mmgroup_generators.h. Word w may have up to five entries. The function returns the length of the word
w.

𝑔 is given as an array of five 32-bit integers.

The element 𝑔 is reduced with function mm_group_n_reduce_element.

It is legal to put w = g.

uint32_t mm_group_n_right_coset_N_x0(uint32_t *g)
Map 𝑔 ∈ 𝑁0 to an element of 𝑁𝑥0.

The function changes the element 𝑔 of 𝑁0 to an element 𝑔′ of 𝑁𝑥0 and returns an exponent 0 ≤ 𝑒 < 3 such that
𝑔 = 𝑔′ · 𝜏𝑒.

uint32_t mm_group_n_to_word_std(uint32_t *g, uint32_t *w)
Convert 𝑔 ∈ 𝑁0 to a standard word of generators.

The representation of 𝑔 is converted to a word of generators of the monster group in the standard order. The
entries of that word are stored in the buffer referred by parameter w.

The standard order of the generators of the monster group in the reduced representation of an element of 𝑁0

differs from the order of the generators returned by function mm_group_n_to_word. Apart from this difference
the action of this function is the same as in that function.

It is legal to put w = g.

int32_t mm_group_n_conj_to_Q_x0(uint32_t *g)
Transform element of 𝑁0 to an element of 𝑄𝑥0.

Let 𝑔 ∈ 𝑁𝑥0 be stored in the array g of five 32-bit integers.

The function tries to calculate a number 0 ≤ 𝑒 < 3 and an element 𝑞 of the subgroup𝑄𝑥0 of𝑁0 with 𝑔 = 𝜏−𝑒𝑞𝜏𝑒.
Here 𝜏 is the triality element in 𝑁0.

In case of succes we return the element 𝑞 in bits 24,. . . ,0 of the return value in Leech lattice encoding and we
return the number 𝑒 in bits 26,. . . ,25 of the return value. In case of failure we return -1.
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uint32_t mm_group_split_word_n(uint32_t *word, uint32_t length, uint32_t *g)
Split an element of 𝑁0 from a word of generators.

Given a array word of generators of the monster group of a given length, that word is split into a possibly
shorter word word1 and an element g of the group 𝑁0 such that word = word1 * g. Then word1 is a prefix of
word. The function returns the length of the prefix word1 of word. It does not change word. Here we just scan
the word from the right, checking for atoms ordered in a way compatible to our representation of 𝑁0.

Words of generators of the monster are implemented as described in file mmgroup_generators.h. Output 𝑔 is
given as an array of five 32-bit integers.

uint32_t mm_group_mul_words(uint32_t *w1, uint32_t l1, uint32_t *w2, uint32_t l2, int32_t e)
Multiply a word of generators of the monster.

Given a word w1 of length l1 and a word w2 of length l2 of generators of the monster group, we compute the
product w3 = w1 * w2**e. Here ** means exponentiation; negative exponents are supported. The word w1 is
replaced by the word w3. The funcion returns the length of the word w3.

A word representing w2**e is appended to word w1 and then the result is simplified using the relations inside
the group 𝑁0. The result w3 is reduced (with respect to these relations) if input w1 is reduced.

Caution!

The buffer for the word w1 referred by pointer w1must be able to store at least l1 + 2 * abs(e) * l2 entries
of type uint32_t. Here the user must provide sufficient space!

Words of generators of the monster are implemented as described in file mmgroup_generators.h.

void mm_group_invert_word(uint32_t *w, uint32_t l)
Invert a word of generators of the monster.

Given a word w of length l the function changes the word in the buffer w to its inverse in place.

Words of generators of the monster are implemented as described in file mmgroup_generators.h.

uint32_t mm_group_check_word_n(uint32_t *w1, uint32_t l1, uint32_t *g_out)
Check if a words of generators of the monster is in 𝑁0.

We check if the word w1 of length l1 of generators of the monster group is in the subroup 𝑁0. If this is the case
then we store the word w1 as an element of 𝑁0 in the array g_out of five 32-bit integers as desribed above. The
function returns the following status information:

0: w1 is the neutral element the monster group

1: w1 is in 𝑁0, but not the neutral element

2: w1 is not in 𝑁0

3: Nothing is known about w1

We check the relations in the generators 𝑁0 only. The output in g_out is valid only if the function returns 0 or
1.

Words of generators of the monster are implemented as described in file mmgroup_generators.h.

uint32_t mm_group_words_equ(uint32_t *w1, uint32_t l1, uint32_t *w2, uint32_t l2, uint32_t *work)
Check if two word of generators of the monster are equal.

We check if the word w1 of length l1 of generators of the monster group is equal to the word w2 of length l2 of
generators. The function returns the following status information:

0: w1 == w2

1: w1 != `w2

3.3. Description of the mmgroup.generators extension 153



mmgroup, Release mmgroup v1.0.0

Greater than 1: equality of w1 and w2 is not known

If the function cannot check the equality of w1 and w2 then it computes a word w3 of length l3 of generators of
the monster group such that w1 == w2 if and only if w3 is the neutral element. Then the function stores the word
w3 in the buffer work and it returns l3 + 2.

Buffer work must have size at least max(2 * l1, l1 + 2 * l2).

Words of generators of the monster are implemented as described in file mmgroup_generators.h.

3.3.7 C functions for the operation of 𝐺𝑥0 on the Leech lattice

The functions in file gen_leech.c implement the operation of the subgroup 𝐺𝑥0 (of structure 21+24.Co1) of the
monster group on its extraspecial subgroup 𝑄𝑥0 (of structure 21+24) by conjugation.

Here an element of the group 𝑄𝑥0 is given as a 25-bit integer in Leech lattice encoding. From that encoding we obtain
an encoding of Λ/2Λ (where Λ is the Leech lattice) by dropping the most significant bit. This corresponds to the
isomorphism 𝑄𝑥0/{±1} ∼= Λ/2Λ.

An element of the group 𝐺𝑥0 is encoded as an array of 32-bit integers, where each integer corresponds to a generator
of the group, as described in the documentation of the header file mmgroup_generators.h.

A vector in the Leech lattice modulo 2 has a type and also a subtype as described in The mmgroup guide for devel-
opers, section Computations in the Leech lattice modulo 2. Here the subtype is a two-digit decimal number, where the
first digit is the type. Function gen_leech2_subtype returns the subtype as a BCD-coded integer. E.g. the subtype
46 is returned as the hexadecimal integer 0x46. So the type can be obtained from the subtype via a shift operation.

For computations in the group 𝐺𝑥0 or Co1 it is important to find an element of 𝐺𝑥0 that maps an arbitrary type-
4 vector in Λ/2Λ to the unique type-4 vector Ω, see Computations in the Leech lattice modulo 2. Function
gen_leech2_reduce_type4 performs this task.

The construction of the group 𝐺𝑥0 also requires some computations in the automorphism group Co0 (of structure
2.Co1) of Λ, see [Con85], section 9 or [Sey20], section 9. The group Co0 acts faithfully on Λ/3Λ. Therefore file
gen_leech.c also provides some functions for dealing with vectors in the Leech lattice modulo 3.

For any 𝑤 ∈ Λ the vector 𝑣 =
√

8 · 𝑤 has integral coordinates. We represent a vector 𝑤 ∈ Λ/3Λ by the vector
𝑣 =

√
8 · 𝑤, with the coordinates of 𝑣 taken modulo 3. We represent each coordinate 𝑣𝑖, 0 ≤ 𝑖 < 24 as a two-bit

integer; so all 48 bits of 𝑣 fit into the a 64-bit integer. Let 𝑣𝑖,1, 𝑣𝑖,0 be the bits of 𝑣𝑖 of valence 21 and 20, respectively.
Then we encode 𝑣 as an 48-bit integer 𝑥 so that bit 24 · 𝑗 + 𝑖 of 𝑥 is equal to 𝑣𝑖,𝑗 . This encoding looks peculiar, but
it greatly simplifies the interaction with the functions in file mat24_functions.c. We call this encoding the Leech
lattice mod 3 encoding. On input, both bits 𝑣𝑖,1, 𝑣𝑖,0 may be equal to 1; but on output, at most on of these bits is equal
to 1.

In [Sey20], section 9.3, the generators 𝑥𝑑, 𝑥𝛿, 𝑦𝛿, 𝑥𝜋, 𝜉 of 𝐺𝑥0 are also defined as generators of a group 𝐺𝑥1 with
|𝐺𝑥1 : 𝐺𝑥0| = 2. The group 𝐺𝑥1 operates on Λ, but the group 𝐺𝑥0 does not. So we take these generators as generators
of 𝐺𝑥1. The kernel of the operation of 𝐺𝑥1 on Λ is the group 𝑄𝑥0 generated by the elements 𝑥𝑑, 𝑥𝛿, 𝑦−1, 𝑑 ∈ 𝒫, 𝛿 ∈ 𝒞.
Here the element 𝑦Ω acts as the central element −1.
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C interface for file gen_leech.c

The functions in file gen_leech.c implement operations on the vectors of the Leech lattice modulo 2 and on the
subgroup 𝑄𝑥0. We use the terminology defined in the document The C interface of the mmgroup project, section
Description of the mmgroup.generators extension.

Functions

uint32_t gen_leech2_mul(uint32_t x1, uint32_t x2)
Return product of two elements the group 𝑄𝑥0.

Here all elements of the group 𝑄𝑥0 are encoded in Leech lattice encoding. The function returns the product of
the elements x1 and x2 of 𝑄𝑥0.

uint32_t gen_leech2_pow(uint32_t x1, uint32_t e)
Return power of element the group 𝑄𝑥0.

Here all elements of the group 𝑄𝑥0 are encoded in Leech lattice encoding. The function returns the power
x1**e of the element x1 of 𝑄𝑥0.

uint32_t gen_leech2_scalprod(uint32_t x1, uint32_t x2)
Return scalar product in the Leech lattice modulo 2.

Here all elements of Leech lattice modulo 2 are encoded in Leech lattice encoding**. The function returns the
scalar product of the vectors x1 and x2 in the Leech lattice modulo 2, which may be 0 or 1.

uint32_t gen_leech2_op_word(uint32_t q0, uint32_t *g, uint32_t n)
Perform operation of 𝐺𝑥0 on 𝑄𝑥0.

The function returns the element 𝑔−1𝑞0𝑔 for 𝑞0 ∈ 𝑄𝑥0 and 𝑔 ∈ 𝐺𝑥0. Here 𝑔 is given as a word of genenators of
length 𝑛 in the array g. Each atom of the word 𝑔 is encoded as defined in the header file mmgroup_generators.
h. Parameter 𝑞0 and the result are encoded in Leech lattice encoding.

The function succeeds also in case 𝑔 /∈ 𝐺𝑥0 if ℎ−1𝑞0ℎ ∈ 𝐺𝑥0 for all prefixes ℎ of 𝑔.

uint32_t gen_leech2_op_atom(uint32_t q0, uint32_t g)
Atomic operation of 𝐺𝑥0 on 𝑄𝑥0.

Equivalent to gen_leech2_op_word(q0, &g, 1).

uint32_t gen_leech2_prefix_Gx0(uint32_t *g, uint32_t len_g)
Scan prefix in 𝐺𝑥0 of a word in the monster group.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array g of length len_g as a word of generators of the subgroup 𝐺𝑥0 of the monster.
The function returns the maximum length len_g such that every prefix of the word in g of length <= len_g is
in the group 𝐺𝑥0.

uint32_t gen_leech2_op_word_many(uint32_t *q, uint32_t m, uint32_t *g, uint32_t n)
Perform operation of 𝐺𝑥0 on elements of 𝑄𝑥0.

Let q be an array of m elements 𝑞𝑗 of the group 𝑄𝑥0 in Leech lattice encoding. Let 𝑔 be an element of the group
𝐺𝑥0 encoded in the array g of length n as in function gen_leech2_op_word.

The function computes the elements 𝑞′𝑗 = 𝑔−1𝑞𝑗𝑔 for 0 ≤ 𝑗 < 𝑚 and stores 𝑞′𝑗 in a[j].

The function applies the same prefix of the word in the array g to all entries of q. It stops if the application of any
prefix of the word in g to any element 𝑞𝑗 fails; and it returns the length of the prefix of a that has been applied
to all elements 𝑞𝑗 . Hence the function returns n in case of success and a number 0 \leq k < n if not all atoms
of q could be applied to all entries of q.
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The function succeeds on an individual entry 𝑞𝑗 if and only if function gen_leech2_op_word succeeds on the
same value.

uint32_t gen_leech2_op_word_leech2(uint32_t l, uint32_t *g, uint32_t n, uint32_t back)
Perform operation of 𝐺𝑥0 on Leech lattice mod 2.

Let 𝑔0 ∈ 𝐺𝑥0 be stored in the array referred by g as a word of generators of the subgroup 𝐺𝑥0 of the monster.
Here 𝑔0 is given as a word of generators of length 𝑛 in the array g. Each atom of the word 𝑔 is encoded as defined
in the header file mmgroup_generators.h. Put 𝑔 = 𝑔0 if back == 0 and 𝑔 = 𝑔−1

0 otherwise.

The function returns the element 𝑙 · 𝑔 for a vector 𝑙 in the Leech lattice mod 2.

Parameter 𝑙 is encoded in Leech lattice encoding, igoring the sign. The function returns 𝑙 · 𝑔, in Leech lattice
encoding, with the sign bit set to zero.

The function is optimized for speed. It returns garbage if any generator in the buffer g is not in 𝐺𝑥0.

int32_t gen_leech2_op_word_leech2_many(uint32_t *a, uint32_t m, uint32_t *g, uint32_t n, uint32_t back)
Perform operation of 𝐺𝑥0 on elements ofLeech lattice mod 2.

Let a be an array of m elements 𝑙𝑗 of the Leech lattice mod 2 in Leech lattice encoding. Let 𝑔0 be an element
of the group 𝐺𝑥0 encoded in the array g of length n as in function gen_leech2_op_word. Put 𝑔 = 𝑔0 if back
== 0 and 𝑔 = 𝑔−1

0 otherwise.

The function replaces each element 𝑙𝑗 in the array m by 𝑙𝑗 ·𝑔. Elements 𝑙𝑗 are encoded in Leech lattice encoding,
igoring the sign.

The function is optimized for speed. It returns zero in case of success. It stores garbage in the array m and returns
a negative value if any generator in the buffer g is not in 𝐺𝑥0.

int32_t gen_leech2_op_word_matrix24(uint32_t *g, uint32_t n, uint32_t back, uint32_t *a)
Convert operation of group 𝐺𝑥0 to 24 times 24 bit matrix.

Let 𝑔0 ∈ 𝐺𝑥0 be stored in the array referred by g as a word of generators of the subgroup 𝐺𝑥0 of the monster.
Here 𝑔0 is given as a word of generators of length 𝑛 in the array g. Each atom of the word 𝑔 is encoded as defined
in the header file mmgroup_generators.h. Put 𝑔 = 𝑔0 if back == 0 and 𝑔 = 𝑔−1

0 otherwise.

The function converts 𝑔 to a 24 × 24 bit matrix 𝑎 acting on the vectors of the Leech lattice mod 2 (encoded
in Leech lattice encoding) by right multiplication. Such matrices form a natural representation of the Conway
group Co1.

The function returns 0 in case of success and a negative value in case of error.

void gen_leech2_op_mul_matrix24(uint32_t *a1, uint32_t n, uint32_t *a)
Multiply an n times 24 bit matrix with a 24 times 24 bit matrix.

The function multiplies the n times 24 bit matrix a1 with the 24 times 24 bit matrix a and stores the result in
matrix a1.

Thus array a1 must have length n; and array a1 must have length 24.

int32_t gen_leech2_map_std_subframe(uint32_t *g, uint32_t len_g, uint32_t *a)
Transform the standard subframe of Leech lattice mod 2

A frame in the Leech lattice Λ is a maximal set of pairwise orthogonal vectors of type 4. In Λ/2Λ (which is the
Leech lattice mod 2) a frame is mapped to a unique vector of type 4. The standard frame Ω in Λ consists of the
type-8 vectors parallel to the basis vectors in Λ.

The subframe 𝑆(𝐹 ) of a frame 𝐹 in Λ is the set {(𝑢+𝑣)/2 | 𝑢, 𝑣 ∈ 𝐹, 𝑢 ̸= ±𝑣}. Any frame 𝑆(𝐹 ) in Λ contains
48 type-4 vectors, and its subframe contains 48 · 46 type-2 vectors.

The image of 𝑆(𝐹 ) in Λ/2Λ spans a 12-dimensional maximal isotropic subpace ⟨𝑆(𝐹 )⟩ of Λ/2Λ, and the type-2
vectors in ⟨𝑆(𝐹 )⟩ are precisely images of 𝑆(𝐹 ).
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Then for the standard frame Ω we have

⟨𝑆(Ω)⟩ = {𝜆𝛿, 𝜆Ω + 𝜆𝛿 | 𝛿 ∈ 𝒞*, 𝛿 even} .

Here 𝒞* is the Golay cocode, and and 𝜆𝑐 is the element of Λ/2Λ corresponding to the Golay code or cocode
element 𝑐.

Then ⟨𝑆(Ω)⟩ is spanned by 𝜆Ω and 𝜆{0,𝑗}, 1 ≤ 𝑗 < 24. Here {𝑖, 𝑗} is the Golay cocode word corresponding to
the sum of basis vectors 𝑖 and 𝑗 of GF24

2 .

The elements 𝑥Ω and 𝑥{0,𝑗} of the group 𝑄𝑥0 are preimages of 𝜆Ω and 𝜆{0,𝑗} under the natural homomorphism
from 𝑄𝑥0 to Λ/2Λ. These elements of 𝑄𝑥0 play an important role in the representation 196883𝑥 of the monster
group. For computations in the subgroup 𝐺𝑥0 of the monster we sometimes want to compute the images of these
elements of 𝑄𝑥0 under conjugation by an element 𝑔 of 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array g of length len_g as a word of generators of the subgroup 𝐺𝑥0 of the monster.
Then this function computes the following 24 elements of 𝑄𝑥0:

𝑥𝑔
Ω, 𝑥

𝑔
{0,1}, . . . , 𝑥

𝑔
{0,23}.

The function stores these 24 elements in the array a (in that order) in Leech lattice encoding.

In case of success the function returns the number of entries of the word g being processed. It returns a negative
value in case of failure.

C interface for file gen_leech_type.c

The functions in file gen_leech_type.c implement operations for detecting the type of a vector in the Leech lattice
modulo 2.

We use the terminology defined in the document The C interface of the mmgroup project, section Description of the
mmgroup.generators extension.

Functions

uint32_t gen_leech2_subtype(uint64_t v2)
Return subtype of vector in Leech lattice mod 2.

The function returns the subtype of the vector 𝑣2 in the Leech lattice modulo 2 as a BCD-coded two-digit integer.
𝑣2 must be given in Leech lattice encoding.

The subtype of a vector in the Leech lattice mod 2 is defined in The mmgroup guide for developers, section
Computations in the Leech lattice modulo 2.

uint32_t gen_leech2_type(uint64_t v2)
Return type of a vector in the Leech lattice mod 2.

This function returns the type of the vector 𝑣2 in the Leech lattice modulo 2. That type may be 0, 2, 3, or 4.

This function is a bit faster than function gen_leech2_subtype().

uint32_t gen_leech2_type2(uint64_t v2)
Compute subtype if vector in Leech lattice mod 2 is of type 2.

This function returns the subtype of the vector 𝑣2 in the Leech lattice modulo 2 if 𝑣2 is of type 2 and 0 otherwise.

It is faster than function gen_leech2_type().
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uint32_t gen_leech2_count_type2(uint32_t *a, uint32_t n)
Count type-2 vectors in an affine subspace of the Leech lattice mod 2.

This function returns the number of type-2 vectors in an affine subspace 𝑉 of the Leech lattice mod 2. Subspace
𝑉 is defined by an array 𝑎 of length 𝑛 of bit vectors. If 𝑎1, . . . , 𝑎𝑛−1 are linear independent then 𝑉 is given by:

𝑉 = {𝑎0 +
∑︀𝑛−1

𝑖=1 𝜆𝑖𝑎𝑖 | 𝜆𝑖 = 0, 1}.

int32_t gen_leech2_start_type24(uint32_t v)
Auxiliary function for function gen_leech2_reduce_type4.

The function returns the subtype of a vector 𝑣 of type 2 in the Leech lattice modulo 2, provided that 𝑣 + 𝛽 is of
type 4. It returns 0 in the special case 𝑣 = 𝛽 + Ω and a negative value if 𝑣 is not of type 2 or 𝑣 + 𝛽 is not of type
4.

It is used for rotating a type-4 vector 𝑣 which is orthogonal to 𝛽 (in the real Leech lattice) into the 𝑣 + Ω. That
rotation will fix the special short vector 𝛽.

int32_t gen_leech2_start_type4(uint32_t v)
Auxiliary function for function gen_leech2_reduce_type4.

The function returns the subtype of a vector 𝑣 of type 4 in the Leech lattice modulo 2. Parameter 𝑣 must a vector
of type 4 in Leech lattice encoding. The function returns the subtype of 𝑣 that will be used for reduction in
function gen_leech2_reduce_type4.

This function takes care of the special vectors Ω and 𝛽 the Leech lattice modulo 2.

It is used for rotating a type-4 vector 𝑣 into Ω. If this is possible, that rotation will fix the special short vector 𝛽.

Therefore the function returns 0 in case 𝑣 = Ω. It returns the subtype of 𝑣 + 𝛽 if 𝛽 and 𝑣 + 𝛽 are of type 2 and
orthogonal in the real Leech lattice.

The function returns a negative value if 𝑣 is not of type 4.

C interface for file gen_leech3.c

The functions in file gen_leech3.c implement operations on the vectors of the Leech lattice modulo 3 and on the
subgroup 𝑄𝑥0. We use the terminology defined in the document The C interface of the mmgroup project, section
Description of the mmgroup.generators extension.

Functions

uint32_t gen_leech3_scalprod(uint64_t v3_1, uint64_t v3_2)
Scalar product of two vectors in the Leech lattice mod 3.

The function returns the scalar product of the vectors 𝑣3,1, 𝑣3,2. The parameters are given in Leech lattice mod
3 encoding. The result is between 0 and 2.

uint64_t gen_leech3_add(uint64_t v3_1, uint64_t v3_2)
Add two vectors in the Leech lattice mod 3.

The function returns the sum of the vectors 𝑣3,1, 𝑣3,2. The parameters and the result are given in Leech lattice
mod 3 encoding.

uint64_t gen_leech3_neg(uint64_t v3)
Negate a vector in the Leech lattice mod 3.

The function returns the negated vector 𝑣3. The parameter and the result are given in Leech lattice mod 3
encoding.
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uint64_t gen_leech2to3_short(uint64_t v2)
Map short vector from Λ/2Λ to Λ/3Λ.

Here parameter 𝑣2 is a short vector (i.e. a vector of type 2) in Λ/2Λ in Leech lattice encoding.

The function returns a short vector in Λ/3Λ corresponding to 𝑣2 in Leech lattice mod3 encoding.

The result is unique upto sign only. The function returns 0 if 𝑣2 is not short.

uint64_t gen_leech2to3_abs(uint64_t v2)
Map vector from Λ/2Λ to Λ/3Λ.

Here parameter 𝑣2 is a short vector of type 2 or 3. in Λ/2Λ in Leech lattice encoding.

The function returns a vector in Λ/3Λ corresponding to 𝑣2 in Leech lattice mod3 encoding.

The result is unique upto sign only. The function returns 0 if 𝑣2 is not of type 2 or 3.

uint64_t gen_leech3to2_short(uint64_t v3)
Map short vector from Λ/3Λ to Λ/2Λ.

Here parmeter 𝑣3 is a short vector (i.e. a vector of type 2) in Λ/3Λ in Leech lattice mod 3 encoding.

The function returns a short vector in Λ/2Λ corresponding to 𝑣3 in Leech lattice encoding.

The result is unique. The function returns 0 if 𝑣3 is not short. This function is an inverse of function
gen_leech2to3_short.

uint64_t gen_leech3to2(uint64_t v3)
Map vector from Λ/3Λ to Λ/2Λ.

Here parameter 𝑣3 is a vector in Λ/3Λ in Leech lattice mod 3 encoding.

If a shortest preimage 𝑣 of 𝑣3 in Λ if of type 𝑡 with 𝑡 ≤ 4 then the function computes the (unique) vector 𝑣2 in
Λ/2Λ that has the same preimage 𝑣 in Λ. Otherwise the function fails.

In case of success the function returns 224 · 𝑡+ 𝑣2, with 𝑣2 given in Leech lattice encoding. The function returns
uint64_t(-1) in case of failure.

uint64_t gen_leech3to2_type4(uint64_t v3)
Map type-4 vector from Λ/3Λ to Λ/2Λ.

Here parameter 𝑣3 must be a type-4 vector in Λ/3Λ in Leech lattice mod 3 encoding.

The function returns a type-4 vector in Λ/2Λ corresponding to 𝑣3 in Leech lattice encoding.

The result is unique. The function returns 0 if 𝑣3 is not of type 4.

uint64_t gen_leech3_op_xi(uint64_t v3, uint32_t e)
Special case of function gen_leech3_op_vector_word

For internal purposes only. This is equivalent to gen_leech3_op_vector_word(v3, g), where g encodes the
element 𝜉𝑒 of 𝐺𝑥1.

Parameter 𝑣3 and the result are given Leech lattice mod 3 encoding.

uint64_t gen_leech3_op_vector_word(uint64_t v3, uint32_t *pg, uint32_t n)
Operation of 𝐺𝑥1 on the Leech lattice mod 3.

The function returns the element 𝑣3𝑔 for 𝑣3 ∈ Λ/3Λ and 𝑔 ∈ 𝐺𝑥0. Here 𝑔 is given as a word of genenators of
length 𝑛 in the array pg. Each atom of the word 𝑔 is encoded as defined in the header file mmgroup_generators.
h.

Parameter 𝑣3 and the result are given Leech lattice mod 3 encoding.
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uint64_t gen_leech3_op_vector_atom(uint64_t v3, uint32_t g)
Atomic operation of 𝐺𝑥1 on the Leech lattice mod 3.

Equivalent to gen_leech3_op_vector_word(v3, &g, 1).

Parameter 𝑣3 and the result are given Leech lattice mod 3 encoding.

C interface for file gen_leech_reduce.c

The functions in file gen_leech_reduce.c implement the transformation of vectors of the Leech lattice modulo 2 to
a standard form by applying an element of the subgroup 𝐺𝑥0 of the monster.

We use the terminology defined in the document The C interface of the mmgroup project, section Description of the
mmgroup.generators extension.

Functions

int32_t gen_leech2_reduce_type2(uint32_t v, uint32_t *pg_out)
Map short vector in Leech lattice to standard vector.

Let 𝑣 ∈ Λ/2Λ of type 2 be given by parameter v in Leech lattice encoding. Then the function constructs a
𝑔 ∈ 𝐺𝑥0 that maps 𝑣 to the standard short vector 𝑣0. Here 𝑣0 is the short vector the Leech lattice propotional to
𝑒2 − 𝑒3, where 𝑒𝑖 is the 𝑖-th basis vector of {0, 1}24.

The element 𝑔 is returned as a word in the generators of 𝐺𝑥0 of length 𝑛 ≤ 6. Each atom of the word 𝑔 is encoded
as defined in the header file mmgroup_generators.h.

The function stores 𝑔 as a word of generators in the array pg_out and returns the length 𝑛 of that word. It returns
a negative number in case of failure, e.g. if 𝑣 is not of type 2.

Caution:

An input vector allows several outputs. Changing the implementation of this function such that the same input
leads to a different output destroys the interoperability between different versions of the project!!

int32_t gen_leech2_reduce_type2_ortho(uint32_t v, uint32_t *pg_out)
Map (orthogonal) short vector in Leech lattice to standard vector.

Let 𝑣 ∈ Λ/2Λ of type 2 be given by parameter v in Leech lattice encoding.

In the real Leech lattice, (the origin of) the vector 𝑣 must be orthogonal to the standard short vector 𝑣0. Here 𝑣0
is the short vector in the Leech lattice propotional to 𝑒2 − 𝑒3, where 𝑒𝑖 is the 𝑖-th basis vector of {0, 1}24.

Let 𝑣1 be the short vector in the Leech lattice proportional to 𝑒2 + 𝑒3. Then the function constructs a 𝑔 ∈ 𝐺𝑥0

that maps 𝑣 to 𝑣1 and fixes 𝑣0.

The element 𝑔 is returned as a word in the generators of 𝐺𝑥0 of length 𝑛 ≤ 6. Each atom of the word 𝑔 is encoded
as defined in the header file mmgroup_generators.h.

The function stores 𝑔 as a word of generators in the array pg_out and returns the length 𝑛 of that word. It returns
a negative number in case of failure, e.g. if 𝑣 is not of type 2, or not orthogonal to 𝑣0 in the real Leech lattice.

Caution:

An input vector allow several outputs. Changing the implementation of this function such that the same input
leads to a different output destroys the interoperability between different versions of the project!!
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int32_t gen_leech2_reduce_type4(uint32_t v, uint32_t *pg_out)
Map a frame in the Leech lattice to the standard frame.

A frame in the Leech lattice Λ is a maximal set of type-4 vectors which are equal modulo 2Λ. A frame is
equivalent to a type-4 vector in Λ/2Λ.

Let 𝑣 ∈ Λ/2Λ of type 4 be given by parameter v in Leech lattice encoding. Then the function constructs a
𝑔 ∈ 𝐺𝑥0 that maps 𝑣 to the standard frame Ω. The standard frame Ω consists of the type-4 vectors parallel to the
coordinate axes.

The element 𝑔 is returned as a word in the generators of 𝐺𝑥0 of length 𝑛 ≤ 6. Each atom of the word 𝑔 is encoded
as defined in the header file mmgroup_generators.h. Let 𝐻 be the stabilizer of Ω. We choose a representative
𝑔 in the coset 𝑔𝐻 such that the inverse 𝑔−1 is a short as possible.

The function stores 𝑔 as a word of generators in the array pg_out and returns the length 𝑛 of that word. It returns
a negative number in case of failure, e.g. if 𝑣 is not of type 4.

The function uses the method described in the The mmgroup guide for developers, section
Computations in the Leech lattice modulo 2.

We make one additional assertion.

Let 𝑣0 be the standard short vector in the Leech lattice proportional to 𝑒2 − 𝑒3, where 𝑒𝑖 is the 𝑖-th ba-
sis vector of {0, 1}24. If 𝑣0 + 𝑣 is of type 2 then this function computes the same result as function
gen_leech2_reduce_type2_ortho applied to the vector 𝑣0 + 𝑣. In this case the result of this function cen-
tralizes 𝑣0. This convention greatly simplifies computations in the baby monster group.

Caution:

An input vector allow several outputs. Changing the implementation of this function such that the same input
leads to a different output destroys the interoperability between different versions of the project!!

uint32_t gen_leech2_type_selftest(uint32_t start, uint32_t n, uint32_t *result)
Test functions gen_leech2_subtype and gen_leech2_reduce_type4

Function gen_leech2_subtype may tested as follows:

We compute the subtypes of all 224 vectors 𝑣 ∈ Λ/2Λ and we count the obtained subtypes in an array result
of length 0x50. The sizes of the orbits of each subtype are known form [Iva99], so a high-level test routine may
check the array result.

During that process we may also test function gen_leech2_reduce_type4. Whenever vector of
type-4 vector 𝑣 occurs, we compute a g \in G_{x0} that maps 𝑣 to the standard frame using
function gen_leech2_reduce_type4; and we check the correctness of that mapping using function
gen_leech2_op_word. We return the number of successful such operations. This number must be equal to
the number of type-4 vectors in Λ/2Λ.

Since this test takes a long time, a high-level function might want to distribute it over several processes. So this
function acccumulates the test results for the vectors 𝑣 with start ≤ 𝑣 < start + n only.

int32_t gen_leech2_pair_type(uint64_t v1, uint64_t v2)
Isomorphsim type of pair of vectors in Leech lattice mod 2.

Let 𝑣1 and 𝑣2 be two vectors in the Leech lattice mod 2 and put 𝑣3 = 𝑣1 + 𝑣2. Let 𝑡𝑖, 𝑖 = 1, 2, 3 be the type of
𝑣𝑖. Then the triple (𝑡1, 𝑡2, 𝑡3) depends on the isomorphism type of the pair (𝑣1, 𝑣2).

If one or three of the vectors (𝑣1, 𝑣2, 𝑣3) are of type 4 then there may be several isomorphism types of pairs
(𝑣1, 𝑣2) with the same triple (𝑡1, 𝑡2, 𝑡3). In this case we define a subtype 𝑠 as follows. We map one of the vectors
𝑣𝑖 of type 4 to the standard frame Ω. Let 𝑤 be the image of any of the vectors 𝑣𝑗 , 𝑗 ̸= 𝑖 under any such mapping.
Then we compute the subtype of 𝑤 with function gen_leech2_subtype, and we let 𝑠 be the last hexadecimal
digit of the computed subtype. The result 𝑠 does not depend on the choices made in the description given above.

3.3. Description of the mmgroup.generators extension 161



mmgroup, Release mmgroup v1.0.0

After reordering 𝑡1, 𝑡2, 𝑡3, the possibilties for tuples (𝑡1, 𝑡2, 𝑡3, 𝑠) with a relevant component 𝑠 are (4,2,2,0),
(4,3,3,4), (4,3,3,6), (4,4,4,0), (4,4,4,4), (4,4,4,6).

If none of the vectors (𝑣1, 𝑣2, 𝑣3) is of type 4 then all the shortest corresponding vectors in the Leech lattice are
defined up to sign. Then these vectors may span a space of dimension 2 or 3; and we put 𝑠 = 1 if that dimension
is equal to 3, and 𝑠 = 0 otherwise. The case 𝑠 = 1 may occur if and only if at least two of the vectors (𝑣1, 𝑣2, 𝑣3)
are of type 3 and none is of type 4.

In all other cases there is at most one such isomorphism type; and we put 𝑠 = 0.

The function takes 𝑣1 and 𝑣2 as parameters v1 and v2 in Leech lattice encding. It returns

212 · 𝑡1 + 28 · 𝑡2 + 24 · 𝑡3 + 𝑠.

We sketch a proof that the returned result actually describes the isomorphism type of the pair (𝑣1, 𝑣2). If one
of the vectors (𝑣1, 𝑣2, 𝑣3) is of type 4 then may map that vector to the standard frame Ω and check the possible
subtypes of the other vectors. These subtypes are described in subsection Computations in the Leech lattice
modulo 2 of The guide for developers, or in [Iva99], Section 4.4 ff.

Otherwise the shortest preimages 𝑣′1, 𝑣′2, 𝑣′3 of 𝑣1, 𝑣2, 𝑣3 in the Leech lattice are defined up to sign. The cases
where these preimages span a subspace of dimension 2 of the Leech lattice are well known, see e.g. [CS99] or
[CCN+85]. If 𝑣′1, 𝑣′2, 𝑣′3 span a 3-dimensional space, then it is easy to see that at least two of these vectors must
be of type 3, and that all vectors (𝑣′1 ± 𝑣′2 ± 𝑣′3)/2 (with all possible combinations of signs) are in the Leech
lattice and of type at most 3. The 3-dimensional lattices satifying these properties can be shown to be S-lattices,
as defined in [CCN+85]. Note that the S-lattices are also known.

Warning: This function has not yet been tested!

C interface for file gen_leech_reduce_n.c

Given a vector 𝑣 in the extraspecial group 𝑄𝑥0, the functions in this module compute a transformation from 𝑣 to a
standard representative of the class 𝑣𝑁 .

Here 𝑄𝑥0 and 𝑁 = 𝑁𝑥0 are as in the project documentation.

We use the terminology defined in the document The C interface of the mmgroup project, section Description of the
mmgroup.generators extension.

Functions

int32_t gen_leech2_reduce_n(uint32_t v, uint32_t *pg_out)
Reduce Leech lattice vector modulo the group N_x0.

Given a vector 𝑣 in the extraspecial group 𝑄𝑥0, we want to find a standard representative of the class 𝑣𝑁 , where
𝑄𝑥0 and𝑁 = 𝑁𝑥0 are as in the project documentation. Here 𝑣 is given in parameter v in Leech lattice encoding.

This function computes such a representative 𝑣1 ∈ 𝑄𝑥0. It returns an element 𝑟 of 𝑁𝑥0 with 𝑣1 = 𝑣𝑟 as a word
of length three in the generators of 𝑁𝑥0. That word is stored in the buffer referred by pg_out as an array of 3
integers of type uint32_t as described in section The monster group in the API reference.

The user may call function gen_leech2_op_word in file gen_leech.c for computing 𝑣1 = 𝑣𝑟. There is a
faster alternative for computing 𝑣1 described in the documetnation of function gen_leech2_reduce_n.

The representative 𝑣1 depends on the subtype of 𝑣 only, with one exception listed below. Here the subtype can be
also computed by function gen_leech2_subtypein file gen_leech.c; it is explained in The mmgroup guide
for developers in section Computations in the Leech lattice modulo 2.

If the subtype of 𝑣 is 00then we have 𝑣1 = 𝑣 for the two vectors 𝑣 = 𝑥±1 of that subtype.
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We compute a mapping 𝑟 = 𝑥𝜋𝑦𝑒𝑥𝑓 , where 𝑟 is an automorphism of the Parker loop, 𝑒 is in the Parker loop, and
𝑓 is either in the Parker loop or in the Golay cocode.

The result 𝑟 is in the even subgroup of 𝑁𝑥0 except in case 𝑣 = 𝑥−Ω, where this is not possible.

See section Orbits of the group N_x0 in the group Q_x0 in The mmgroup guide for developers for our choice
of the representative of the 𝑁𝑥0 orbits.

int32_t gen_leech2_reduce_n_rep(uint32_t subtype)
Compute standard representative of Q_x0 modulo the group N_x0.

Given a subtype subtype in the Leech lattice modulo 2, the function returns a representative of a nonzero orbit
of 𝑄𝑥0 under the action of 𝑁𝑥0.

See the table in section Orbits of the group N_x0 in the group Q_x0 in The mmgroup guide for developers
for our choice of such a representative.

C interface for file gen_leech_reduce_22.c

Let Λ/2Λ be the Leech lattice modulo 2. Let 𝑣2, 𝑣3 ∈ Λ/2Λ with type(𝑣2) = 2 and type(𝑣3) = type(𝑣2 + 𝑣3) = 𝑡
for 2 ≤ 𝑡 ≤ 3. We want to compute the set of all vectors 𝑣4 ∈ Λ/2Λ of type 4 with type(𝑣2 + 𝑣4) = type(𝑣3 +
𝑣4) = type(𝑣2 + 𝑣3 + 𝑣4) = 2. There are 891 or 100 such vectors in case 𝑡 = 2 or 𝑡 = 3, respectively. Function
gen_leech2_u4_2xx in this module computes the list of all such vectors.

We motivate this (rather complicated) computation as follows. The main algorithm for the reduction of an element of
the Monster in Version v1.0.0 the mmgroup package works in the representation 𝜌15 of the monster, with coefficients
taken mod 15. In future versions it would be faster to work in representation 𝜌3 instead. For the reduction algorithm
we have to compute certain sets 𝑈4(𝑣) for axis 𝑣 in the representation of the Monster as defined in [Sey22]. This
computation is considerably more difficult for 𝑣 ∈ 𝜌3 than for 𝑣 ∈ 𝜌15. It turns out that for 𝑡 = 2, 3 the sets computed
above are just the sets 𝑈4(𝑣) when 𝑣 is in the orbit called ‘6A’ or ‘10A’ in [Sey22]. Given an axis 𝑣 ∈ 𝜌3 in one of
these orbits, we can effectively compute suitable vectors 𝑣2, 𝑣3 as discussed above.

For that computation we need a function that maps vectors 𝑣2, 𝑣3 to fixed vectors 𝑤2, 𝑤3𝑡 ∈ Λ/2Λ. Function
gen_leech2_reduce_2xx essentially performs this task; see the documentation of that function for details.

The group fixing 𝑣2 and 𝑣3 is the unitary group PSU6(2) in case 𝑡 = 2, and the Higman-Sims group in case 𝑡 = 3, see
[CS99], Ch. 10.3.4. A detailed discussion of the case 𝑡 = 3 is given in [CS99], Ch. 10.3.5.

We use the terminology defined in the document The C interface of the mmgroup project, Section Description of the
mmgroup.generators extension. Vectors in Λ/2Λ are given in Leech lattice encoding; the sign bit is ignored on input
and set to zero on output.

Functions

int32_t gen_leech2_n_type_22(uint32_t n)
Generate certain type-2 vectors in the Leech lattice.

The function maps the integers 0 ≤ 𝑛 < 4600 to the 4600 type-2 vectors 𝑣 in the Leech lattice mod 2, such that
that 𝑣+𝑤 is also of type 2 in the Leech lattice mod 2. Here 𝑤 is the standard type-2 vector (0, 0, 4,−4, 0, . . . , 0).
Such a vector 𝑣 is returned in Leech lattice encoding.

The function returns a negative value in case of failure; e.g. if 𝑛 ≥ 4600.

int32_t gen_leech2_find_v4_2xx(uint32_t v2, uint32_t v3, uint64_t *seed)
Support for reducing a certain pair of vectors in the Leech lattice.

Let v2 be a vector of type 2 in the Leech lattice mod 2, and let v3 be a vector of type t in the Leech lattice mod
2, with 2 <= t <= 3, such that v2 + v3 is also of type t. Here v2 and v3must be given in Leech lattice encoding.
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The function computes a vector v4 of type 4 such that v2 + v4, v3 + v4, and v2 + v3 + v4 are all of type
2. Vector v4 can be used in function gen_leech2_find_v4_2xx for reducing the pair (v2, v3) to a standard
pair of vectors.

The function returns the value t * 0x1000000 + v4 in case of succcess, with t as above. Parameter seed is
a seed for a random generator as described in module gen_random.c. The function returns a negative value in
case of failure.

The function tries to find random vectors vx of type 2 in the Leech lattice mod 2 such that both, vx + v2, and
vx + v3 are of type 2. Then the vector v4 = v2 + v3 + vx satifies the required conditions.

For finding vxwe transform v2 to the standard type-2 vector with a transformation tf. Then we generate random
type-2 vectors with function gen_leech2_n_type_22. These random type-2 vectors are interpreted as trans-
formed vectors tf(vx); and we will check the required conditions on the transformed vectors tf(v2), tf(v3),
and tf(vx).

int32_t gen_leech2_reduce_2xx(uint32_t v2, uint32_t v3, uint32_t v4, uint32_t *g)
Reduce a certain pair of vectors in the Leech lattice.

Let v2 be a vector of type 2 in the Leech lattice mod 2, and let v3 be a vector of type t in the Leech lattice mod
2, with 2 <= t <= 3, such that v2 + v3 is also of type t. Here v2 and v3must be given in Leech lattice encoding.

The function computes an element g of the Conway group Co1 such that v2 * g = w2 and v3 * g = w3 with
w2 = (0, 0, 4, -4, 0, ..., 0). Here we have w3 = (0, 4, -4, 0, ..., 0) if t == 2 and w3 =
(1, 1, 5, 1, ..., 1) if t == 3.

The function stores g in the array g as a word of length k of generators of the subgroup G_x0 of the Monster.
These generators are encoded as described in file mmgroup_generators.h. We have k <= 8; so the array g
must have size at least 8.

The function returns the value k >= 0 in case of succcess, and a negative value in case of failure.

Parameter v4must be a type-4 vector satisfying certain conditions as described in de documentation of function
gen_leech2_find_v4_2xx. That function computes a suitable random vector v4.

Internally, we use function gen_leech2_reduce_type4 to find an element g_0 of Co1 that maps v4 to the
standard type-4 vector Omega. To finish up, we just have to calculate an element g_1 of the subgroup 211.𝑀24

of Co1 such that g = g_0 * g_1 satisfies the required conditions.

int32_t gen_leech2_map_2xx(uint32_t *g, uint32_t n, uint32_t t, uint32_t *a)
Auxiliary function for function gen_leech2_u4_2xx

Let v2, v3 be as in function gen_leech2_reduce_2xx. Let g be an element of the group G_x0 of length n that
maps v2 and v3 to w2 and w3, with w2, w3 as in function gen_leech2_reduce_2xx. Here g should have been
computed by that function.

The function computes all vectors v4 of type 4 in the Leech lattice mod 2 such that v2 + v4, v3 + v4, and
v2 + v3 + v4 are of type 2. It stores the list of these vectors in the array a and returns the length of that list.

Array a must have length 891 in case t == 2 and length 100 in case t == 3. Other values of t are illegal.

int32_t gen_leech2_u4_2xx(uint32_t v2, uint32_t v3, uint64_t *seed, uint32_t *a)
Compute a certain set of type-4 vectors in the Leech lattice mod 2.

Let v2 be a vector of type 2 in the Leech lattice mod 2, and let v3 be a vector of type t in the Leech lattice mod
2, with 2 <= t <= 3, such that v2 + v3 is also of type t. Here v2 and v3must be given in Leech lattice encoding.

The function computes all vectors v4 of type 4 in the Leech lattice mod 2 such that v2 + v4, v3 + v4, and v2
+ v3 + v4 are of type 2. There are 891 such vectors in case t = 2 and 100 such vectors in case t = 3. The
list all these vectors is stored in the array a in Leech lattice encoding in an undefined order. Thus array a must
have length at least 891.
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The function uses a random generator. Parameter seed is a seed for a random generator as described in module
gen_random.c.

The function returns the length of the array a in case of succcess, and a negative value in case of failure.

C interface for file gen_union_find.c

The functions in file gen_union_find.c implement a union-find algorithm. This may be used e.g. for computing the
orbits of the Leech lattice mod 2 under the action of a group.

Functions

int32_t gen_ufind_init(uint32_t *table, uint32_t length)
Initialize table for union-find algorithm.

The function initializes an array referred by parameter table for performing a union-find algorithm on the set
S(length) of integers i with 0 <= i < length. Array table must have size length. Here 0 <= length
<= 0x40000000must hold.

Then table will store a partition of the set S(length) in an internal format. Initially, that partition consists
of singletons. One may use function gen_ufind_union for joining two sets of that partition. Any set in the
partition is represented by an element of that set. The rules for computing a representative of a set are not
disclosed to the user. You may use function gen_ufind_find for finding the representative of a set. After
calling function gen_ufind_find_all_min each set is represented by its smallest element. The representative
of a set may change after calling function gen_ufind_union.

The function returns 0 in case of success, and a negative value in case of failure (e.g. if length is too big.)

int32_t gen_ufind_find(uint32_t *table, uint32_t length, uint32_t n)
The find function for the union-find algorithm.

Let S(length) be the set of integers i with 0 <= i < length; and let a partition of S(length) be stored in
the array table (of size length) as described in function gen_ufind_init.

The function returns the representative of the set containing the integer n. It returns a negative number in case
of failure, e.g. if n >= length.

void gen_ufind_union(uint32_t *table, uint32_t length, uint32_t n1, uint32_t n2)
The union function for the union-find algorithm.

Let S(length) be the set of integers i with 0 <= i < length; and let a partition of S(length) be stored in
the array table (of size length) as described in function gen_ufind_init.

The function joins the sets in the partition containg the elements n1 and n2.

int32_t gen_ufind_find_all_min(uint32_t *table, uint32_t length)
Choose smallest representatives for sets in union-find algorithm.

Let S(length) be the set of integers i with 0 <= i < length; and let a partition of S(length) be stored in
the array table (of size length) as described in function gen_ufind_init.

The function chooses the smallest element of a set in a partition as the representative of the set. Thus a subsequent
call to function gen_ufind_find with parameter n returns the smallest element of the set containg n.

The function returns the number of the sets in the partition. A negative return value indicates a error the array
table.
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int32_t gen_ufind_partition(uint32_t *table, uint32_t length, uint32_t *ind, uint32_t len_ind)
Output the partition computed by the union-find algorithm.

Let S(length) be the set of integers i with 0 <= i < length; and let a partition of S(length) be stored in
the array table (of size length) as described in function gen_ufind_init.

We assume that the partition stored in the array table contains n_sets sets. Then we overwrite the array
table with a list of lists, where each list corresponds to a set in the partition. We write some index infomation
for interpreting these lists into the array ind of length len_ind.

Array table will contain the length elements of the set S(length) in such a way that for 0 <= i < n_sets
the i-th set in the partition is equal to the set of integers given by table[ind[i]], ..., table[ind[i+1]
- 1].

So the array ind must have size at least n_sets + 1; i.e. we must have len_ind > n_sets.
Function gen_ufind_find_all_min must be called beford calling this function. Note that function
gen_ufind_find_all_min returns n_sets in case of success.

The entries table[ind[i]], ..., table[ind[i+1] - 1] corresponding to set in the partition are sorted.
The sets of the partition are sorted by their smallest elements.

The function returns n_set in case of success and a negative value in case of failure.

void gen_ufind_union_affine(uint32_t *table, uint32_t length, uint32_t *m, uint32_t len_m, uint32_t v)
Perform affine union operations in the union-find algorithm.

Let S(length) be the set of integers i with 0 <= i < length; and let a partition of S(length) be stored in
the array table (of size length) as described in function gen_ufind_init.

In this function the entries of S(length) are interpreted as bit vectors. The function joins the set containing i
with the set containg i * M + v for all i. Here M the bit matrix over GF(2) referred by m with len_m rows, and
v a bit vector. All bit vector arithmetic is done over GF(2).

int32_t gen_ufind_union_leech2(uint32_t *table, uint32_t *g, uint32_t len_g)
Join orbits of the Leech lattice mod 2.

The Conway group Co1 has a natural action on on Λ/2Λ, i.e. on the Leech lattice mod 2. The subgroup 𝐺𝑥0 of
the Monster (of structure 21+24.Co1) has the same action on on Λ/2Λ.

In this function we assume that the array table contains a partition of the set {𝑖 | 0 ≤ 𝑖 < 224} as described in
function gen_ufind_init. In that function the array table should have been initialized with a length of 224.

Here each integer 𝑖 is interpreted as an element of Λ/2Λ in Leech lattice encoding, as described in the document
The C interface of the mmgroup project, section Description of the mmgroup.generators extension.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array referred by g as a word of generators of the subgroup 𝐺𝑥0 of the monster.
Here 𝑔 is given as a word of generators of length len_g in the array g. Each atom of the word 𝑔 is encoded as
defined in the header file mmgroup_generators.h.

Then the function joins the set containing 𝑖 with the set containing 𝑖 · 𝑔 for all 𝑖, using the union-find algorithm.

The function returns 0 in case of success and a negative value in case of failure (e.g. if 𝑔 is not in 𝐺𝑥0).
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3.3.8 C functions for the generator 𝜉 of the monster group

Reference implementation for module gen_xi_functions.c

The methods in class GenXi in this module are a reference implementations of the functions in module
gen_xi_functions.c. These functions deal with the operation of the generator 𝜉 of the monster defined in [Sey20],
Section 9, on a subgroup 𝑄𝑥0, and also with the monomial part of that operation on the 196884-dimensional represen-
tation 𝜌 of the monster.

Generator 𝜉 is an element of the subgroup 𝐺𝑥0 of the monster. It operates on the normal subgroup 𝑄𝑥0 of 𝐺𝑥0 of
structure 21+24 by conjugation as described in cite:Seysen20, Lemma 9.5. Method gen_xi_op_xi of class GenXi
implements the operation of the generators 𝜉𝑒 on the group 𝑄𝑥0. Here the elements of 𝑄𝑥0 are given in Leech lattice
encoding, as described in The C interface of the mmgroup project, Section Description of the mmgroup.generators
extension.

Representation 𝜌 has a subspace 98280𝑥 of dimension 98280 on which 𝐺𝑥0 operates monomially in the same way as
it operates on the short elements of 𝑄𝑥0. Here the basis vectors of 98280𝑥 (together with their opposite vectors) can
be identified with the short elements of 𝑄𝑥0.

For a fast implementation of the operation of 𝜉𝑒 on 98280𝑥 we precompute tables as described in the mmgroup guide
for developers, Section Some mathematical aspects of the implementation, Subsection Implementing generators of
the Monster group, Subsubsection Monomial operation of the generators xi^e. We adopt the terminology from that
subsection.

In that subsection the basis vectors of 98280𝑥 are subdivided into five boxes, so that 𝜉 acts as a permutation on these
boxes. Within each of these boxes the basis vectors of 98280𝑥 are numbered in a natural way as described in that
subsection. Operator 𝜉 permutes the five boxes 1,. . . ,5 as follows:

• 1 -> 1, 2 -> 2, 3 -> 4 -> 5 -> 3 .

For each short vector in 𝑄𝑥0 we encode the number of the box containing the vector, the position of the vector inside
the box, and and the sign of the vector in the lowest 19 bits of a 32-bit integer as follows:

• Bit 18. . . 16: number of the box, running from 1 to 5.

• Bit 15: sign bit

• Bit 14. . . 0: Entry inside the box

We call this encoding the Short vector encoding of a short vector in 𝑄𝑥0.

Methods gen_xi_short_to_leech and gen_xi_leech_to_short in class GenXi convert elements of 𝑄𝑥0 from
Leech lattice encoding to Short vector encoding and vice versa. Method gen_xi_op_xi_short uses these two methods
together with method gen_xi_op_xi in order to compute the operation of 𝜉𝑒 on a vector in 98280𝑥 encoded in Short
vector encoding.

Using method gen_xi_op_xi_short we may easily compute tables for the operation of 𝜉 and 𝜉2 on a specific box.
Method gen_xi_make_table computes an array containing the lower 16 bits of the images of the entries of a box
under the operation 𝜉𝑒. Bits 18. . . 16 of these images can be reconstructed from the permutation of the boxes given
above.
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C interface for file gen_xi_functions.c

The functions in file gen_xi_function.c correspond to the python functions in class mmgroup.dev.generators.
gen_xi_ref.GenXi. They are used for computing the tables required for implementing the operation of generator 𝜉
on the representation 𝜌𝑝 of the Monster.

Functions

uint32_t gen_xi_g_gray(uint32_t v)
Compute function 𝛾 on a Golay code element.

Here parameter 𝑣 is encoded in gcode representation, and the return value 𝛾(𝑣) is encoded in cocode represen-
tation. These representations are defined in the Description of the mmgroup.mat24 extension.

uint32_t gen_xi_w2_gray(uint32_t v)
Compute function 𝑤2 on a Golay code element.

Here parameter 𝑣 is encoded in gcode representation as defined in the Description of the mmgroup.mat24 ex-
tension. The function returns 𝑤2(𝑣), which may be 0 or 1.

uint32_t gen_xi_g_cocode(uint32_t c)
A kind of an inverse of function 𝛾.

Given a cocode element 𝑐 in cocode representation, the function returns the unique grey Golay code vector 𝑣
such that 𝛾(𝑣) is equal to the grey part of 𝑐. 𝑣 is returned in gcode representation, see the Description of the
mmgroup.mat24 extension.

uint32_t gen_xi_w2_cocode(uint32_t v)
Compute function 𝑤2 on a Golay cocode element.

Here parameter 𝑣 is encoded in cocode representation as defined in the Description of the mmgroup.mat24
extension. The function returns 𝑤2(𝑣), which may be 0 or 1.

uint32_t gen_xi_op_xi(uint32_t x, uint32_t e)
Conjugate an element of the group 𝑄𝑥0 with 𝜉𝑒.

The function returns 𝜉−𝑒𝑥𝜉𝑒 for an element 𝑥 of the group 𝑄𝑥0. Input 𝑥 and the return value are encoded in
Leech lattice encoding as described above.

uint32_t gen_xi_op_xi_nosign(uint32_t x, uint32_t e)
Similar to function gen_xi_op_xi, ingoring sign.

The function returns 𝜉−𝑒𝑥𝜉𝑒 for an element 𝑥 of the group 𝑄𝑥0. Input 𝑥 and the return value are encoded in
Leech lattice encoding as described above. This function computes the result up to sign only.

uint32_t gen_xi_leech_to_short(uint32_t x)
Convert the encoding of an element of the group 𝑄𝑥0.

The function converts an element 𝑥 of the group 𝑄𝑥0 from Leech lattice encoding to Short vector encoding and
returns the converted element.

uint32_t gen_xi_short_to_leech(uint32_t x)
Convert the encoding of an element of the group 𝑄𝑥0.

The function converts an element 𝑥 of the group 𝑄𝑥0 from Short vector encoding to Leech lattice encoding and
returns the converted element.

An invalid value 𝑥 is converted to 0.
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uint32_t gen_xi_op_xi_short(uint32_t x, uint32_t u)
Conjugate an element of the group 𝑄𝑥0 with 𝜉𝑒.

The function returns 𝜉−𝑒𝑥𝜉𝑒 for an element 𝑥 of the group 𝑄𝑥0. In contrast to function gen_xi_op_xi, the input
𝑥 and the return value are encoded in short vector encoding as described above.

Any invalid element 𝑥 is converted to 𝑥.

uint32_t gen_xi_make_table(uint32_t b, uint32_t e, uint16_t *ptab)
Create table for operation of 𝜉𝑒,.

The function creates a table ptab such that ptab[i] encodes 𝜉−𝑒𝑥𝜉𝑒, where 𝑥 = 216 ·𝑏+𝑖 encodes a short vector
in 𝑄𝑥0 in Short vector encoding. The length of the gererated table is 𝑙(𝑏) = 2496, 23040, 24576, 32768, 32768
for 𝑏 = 1, 2, 3, 4, 5.

Here ptab[i] contains the lower 16 bits of the table entry only, with bit 15 equal to the sign bit. The upper 3
bits of ptab[i] depend on b only; they can be deduced from the permutation of the boxes b = 1,...,5 by 𝜉
described above.

Not all table indices i correspond to short vectors. We put p[i] = i for all invalid indices i.

void gen_xi_invert_table(uint16_t *ptab, uint32_t len, uint32_t ncols, uint16_t *pres, uint32_t len_res)
Invert a table created by function gen_xi_make_table

The function computes the inverse table of a table ptab of length len created by function gen_xi_make_table
and stores the inverse table in the buffer referred by pres.

Parameter len_res is the length of the returned table. Parameter ncolsmust be 24 or 32. This means that only
entries ptab[32*i + j] with 0 <= j < ncols are valid.

The details of the inversion of such a table are rather tricky; they are coded in class mmgroup.dev.mm_basics.
mm_tables_xi.Pre_MM_TablesXi. The purpose of this function is to speed up the calculations in that class.

void gen_xi_split_table(uint16_t *ptab, uint32_t len, uint32_t mod, uint32_t *psign)
Split a table created by function gen_xi_invert_table

The function splits the sign bit from a table ptab of length len created by function gen_xi_invert_table and
replaces ptab[i] by (ptab[i] & 0x7fff) % mod. The sign bit ptab[32*i+j] >> 15 is stored in bit j of
entry psign[i].

The purpose of this function is to speed up the computations in class mmgroup.dev.mm_basics.
mm_tables_xi.Pre_MM_TablesXi.

3.3.9 C functions implementing a random generator

The python extension mmgroup.generators provides a random generator. Its main purpose is the very fast generation
of a vector of integers modulo 𝑝 for the representation 𝜌𝑝 of the monster group for small numbers 𝑝.

The internal operation of the random generator is described in file gen_random.c. Here we describe the python
interface of the random generator.

This interface is given by a set of functions that can be imported from python module mmgroup.generators.

A python function dealing with the randon generator requires a seed. Here a seed is either an object returned by function
rand_make_seed or None (default).

The default seed is (hopefully) thread save, and it is initialized from volatile sources such as the time, the process and
the thread id, etc.

A seed created by function rand_make_seed is initalized from a fixed source (which is a 64-bit integer).

Each seed may be used by one thread only. In python a seed is crreated for each thread whenever needed.
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Python functions in module mmgroup.generators

The following functions should be imported from module mmgroup.generators.

.rand_get_seed()

Return the seed associated with the current thread

This function is used for obtaining a suitable python object for calling a C function that deals with the random
generator. The user must not modify that seed!

.rand_make_seed(valu)
Create a deterministic seed object for the random generator

The function creates a seed object and returns that object. It is intialized with parameter value, which must be
an unsigned 64-bit integer.

.rand_bytes_modp(p, num_bytes, seed=None)
Return a random array of integers mod p

The function returns a one-dimensional numpy array of uniform distributed random integers x with 0 <= x <
p. That array has length num_bytes and has dtype = numpy.uint8.

Parameter seed must be either None (default, referring to the default seed) or a seed object created by function
rand_make_seed.

.rand_fill_bytes_modp(p, array_bytes, seed=None)
Fill an existing array with random integers mod p

The function fills the one-dimensional numpy array array_bytes with uniform distributed random integers x
with 0 <= x < p. That array must have dtype = numpy.uint8.

Parameter seed must be either None (default, referring to the default seed) or a seed object created by function
rand_make_seed.

.rand_gen_modp(p, seed=None)
Return random integer x with 0 <= x < p.

Here 1 <= p <= 2**32 must hold.

Parameter seed must be either None (default, referring to the default seed) or a seed object created by function
rand_make_seed.

C interface for file gen_random.c

File gen_random.c provides a fast random generator for creating random vectors in the representations of the monster
group. This generator supports very fast generation of long random vectors of integers modulo p for p <= 256.

The seed for such a random generator is given by an array of type uint64_t seed[MM_GEN_RNG_SIZE]. In this
version we have MM_GEN_RNG_SIZE = 4.

The function gen_rng_seed(uint64_t *seed) fills an existing array seed of that type with random seed data. See
description of that function for details. The idea is that in a mulithreading environment every thread has its own random
generator. There is also a function gen_rng_seed_no for a determistic intialization of the seed. The user should call
function gen_rng_seed_init for initialization.

The function gen_rng_bytes_modp(uint32_t p, uint8_t *out, uint32_t len, uint64_t *seed) writes
len uniform random numbers x_i with 0 <= x_i < p to the array referred by the pointer out. Here 1 < p <= 256
must hold.

This function is optimized for generating large random vectors with, say, len >= 1000, as required for the represen-
tation of the monster.
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Function gen_rng_modp generates a single random number x with 0 <= x < p for a 32-bit number p.

Internal operation.

We use the xoshiro256** pseudo random number generator, see

https://bashtage.github.io/randomgen/bit_generators/xoshiro256.html

We seed a master generator from various external random sources, e.g. the system time, the process id, etc. We use
xoshiro256** for both, the master and the user generator. We shift the master generator by 2**128 steps for seeding a
user generator.

Functions

void gen_rng_seed_init(void)
Seed the master random generator with random data.

Here seed is an array of 4 integers of type uint64_t.

The function fills the seed with random data, using various sources, e.g. the system time, the process id, etc.

void gen_rng_seed_no(uint64_t *seed, uint64_t seed_no)
Seed a user random generator deterministically.

Here seed is an array of 4 integers of type uint64_t.

The function fills the seed with data depending on the number seed_no.

void gen_rng_seed(uint64_t *seed)
Seed a user random generator from the master random generator.

Here seed is an array of 4 integers of type uint64_t.

The function seeds the user generator with the seed seed from the master random generator. The function is
thread-safe if function gen_rng_seed_init() has been called before.

Each thread must use its own seed.

int32_t gen_rng_bytes_modp(uint32_t p, uint8_t *out, uint32_t len, uint64_t *seed)
Generate random integers modulo a small number p

Generate an array of length len of random 8-bit integers x with 0 <= x < p. Here 1 < p <= 256 must hold.

These random integers are written to the array referred by out.

Parameter seed points to the seed for the random generator. That seed must have been created by function
gen_rng_seed_rnd` or by a similar function.

The function returns zero in case of success and a nonzero value otherwise.

uint32_t gen_rng_modp(uint32_t p, uint64_t *seed)
Generate one random integer modulo a number p

Generate an integer x with 0 <= x < p. Here 0 <= p < 2**32 must hold. p = 0 is interpreted as p =
2**32.

Parameter seed points to the seed for the random generator. That seed must have been created by function
gen_rng_seed_rnd or by a similar function.

The function returns the random number x.
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uint64_t gen_rng_bitfields_modp(uint64_t p, uint32_t d, uint64_t *seed)
Generate random bit field of integers modulo a number p

Generate integers x_i, 0 <= i < 64 / d with 0 <= x < p. Here parameter d is the with of a bit field. The
function reuturns an unsigned 64-bit integer x with the random value x_i stored in bits i*d + d - 1,..., i
*d of x. In case d = 0 we generate one random number in x.

Here 1 <= p < 2**d must hold. p = 0 is interpreted as p = 2**64.

Parameter seed points to the seed for the random generator. That seed must have been created by function
gen_rng_seed_rnd or by a similar function.

3.4 Description of the mmgroup.clifford12 extension

3.4.1 Quadratic state vectors

The C functions in modules qstate.c and qsmatrix.c perform operations on quadratic state matrices given by triples
(𝑒,𝐴,𝑄) as described in API reference the section Long-term stable storage of vectors of the representation.

A quadratic state vector 𝑣 of type qbstate12_type with component ncols = nmodels a complex vector in a vector
space 𝑉 of dimension 2𝑛, or an 2𝑛−𝑘 × 2𝑘 matrix.

The basis of vector space 𝑉 is labelled by the elements of the Boolean vector space F𝑛
2 . In C and python programs we

represent the element (𝑥𝑛−1, . . . , 𝑥0) of F𝑛
2 by the integer

∑︀
0≤𝑖<𝑛 2𝑖 · 𝑥𝑖. This leads to a natural representation of a

vector 𝑣 ∈ 𝑉 as a one-dimensional complex array of length 2𝑛, starting with index 0.

A quadratic state matrix is a quadratic shape vector augmented by an information about its matrix shape. For more
details we refer to the description of struct qbstate12_type in file clifford12.h.

3.4.2 Header file clifford12.h

File clifford.h is the header file for shared library mmgroup_clifford12. This comprises the following
C modules:

{0}.

Defines

QSTATE12_UNDEF_ROW

Marker for an undefined row index in function qstate12_row_table()

Enums

enum qstate12_error_type
Error codes for functions in this module.

Unless otherwise stated, the functions in modules qstate.c, qmatrix.c, and xsp2co1.c return
nonnegative in case of success and negative values in case of failure. Negative return values mean
error codes as follows:

Values:
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enumerator ERR_QSTATE12_NOTFOUND
No object with the requested property found.

enumerator ERR_QSTATE12_INCONSISTENT
State is inconsistent.

enumerator ERR_QSTATE12_QUBIT_INDEX
Qubit index error.

enumerator ERR_QSTATE12_TOOLARGE
State is too large for this module.

enumerator ERR_QSTATE12_BUFFER_OVFL
Buffer overflow; usually there are now enough rows available.

enumerator ERR_QSTATE12_Q_NOT_SYMM
Bit matrix part Q is not symmetric.

enumerator ERR_QSTATE12_BAD_ROW
Bad row index for bit matrix.

enumerator ERR_QSTATE12_INTERN_PAR
Internal parameter error. Usually a bad row has been requested.

enumerator ERR_QSTATE12_SCALAR_OVFL
Overflow or underflow in scalar factor.

enumerator ERR_QSTATE12_CTRL_NOT
Bad control_not gate. A qubit in a ctrl-not gate cannot control itself.

enumerator ERR_QSTATE12_SHAPE_COMP
Shape mismatch in comparing matrices.

enumerator ERR_QSTATE12_SCALAR_INT
Scalar factor is not an integer.

enumerator ERR_QSTATE12_PARAM
Parameter error.

enumerator ERR_QSTATE12_DOMAIN
Matrix is not is the expected domain.

enumerator ERR_QSTATE12_SHAPE_OP
Shape mismatch in matrix operation.
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enumerator ERR_QSTATE12_MATRIX_INV
Matrix is not invertible.

enumerator ERR_QSTATE12_PAULI_GROUP
Matrix is not in the Pauli group.

enumerator ERR_QSTATE12_NOT_MONOMIAL
Matrix is not monomial.

enumerator ERR_QSTATE12_LEECH_OP
Internal error in operation of group Co_0.

enumerator ERR_QSTATE12_REP_GX0
Error in operation of group 2^{1+24}.Co_1.

enumerator ERR_QSTATE12_NOTIN_XSP
Element of G_x0 not in 2^{1+24}.

enumerator ERR_QSTATE12_GX0_TAG
Bad tag for atom in group G_x0.

enumerator ERR_QSTATE12_GX0_BAD_ELEM
Bad element of group G_x0.

struct qstate12_type
#include <clifford12.h> Description of a quadratic state matrix.

More precisely, a variable of this type decribes the representation (𝑒′, 𝐴,𝑄) of a quadratic mapping
𝑓(𝑒′, 𝐴,𝑄). Here 𝐴 is an (1 + 𝑚) × 𝑛 bit matrix. 𝑄 is a symmetric (1 + 𝑚) × (1 + 𝑚) bit matrix
representing an symmetric bilinear form. We always have 𝑄0,0 = 0. Then the quadratic mapping
𝑓(𝑒′, 𝐴,𝑄) : F𝑛

2 → C is given by

𝑓(𝑒′, 𝐴,𝑄)(𝑥) = 𝑒′ ·
∑︁

{𝑦=(𝑦0,...,𝑦𝑚)∈F𝑚+1
2 |𝑦0=1,𝑦·𝐴=𝑥}

exp

⎛⎝𝜋
√
−1

2

𝑚∑︁
𝑗,𝑘=0

𝑄𝑗,𝑘𝑦𝑗𝑦𝑘

⎞⎠ .

Matrices 𝐴 and 𝑄 are concatenated to an (𝑚+1)× (𝑛+𝑚+1) matrix 𝑀 such that 𝑀𝑖,𝑗 = 𝐴𝑖,𝑗 for
𝑗 < 𝑛 and 𝑀𝑖,𝑗 = 𝑄𝑖−𝑛,𝑗 for 𝑗 ≥ 𝑛. Matrix 𝑀 is encoded in a one-dimensional array of unsigned
64-bit integers. Here bit 𝑗 of entry 𝑖 of the array corresponds to 𝑀𝑖,𝑗 , with bit 0 the least significant
bit.

We do not update column 0 of matrix 𝑄. 𝑄𝑗,0 is inferred from 𝑄0,𝑗 for 𝑗 > 0 and we always have
𝑄0,0 = 0.

We also interpret a quadratic mapping 𝑓 from F𝑛
2 to C as a complex 2𝑛−𝑘×2𝑘 matrix 𝑈 with entries

𝑈 [𝑖, 𝑗] = 𝑓(𝑏0, . . . , 𝑏𝑛−1), where (𝑏𝑛−1, ..., 𝑏0)2, is the binary representation of the integer 𝑖 ·2𝑘 +𝑗,
and 𝑘 is given by component shape1 of the structure.
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The current implementation requires 𝑛 + 𝑚 <= 63, so that all columns of the bit matrix 𝑀 fit into
a 64-bit integer. With this restriction we may still multiply 212 × 212 matrices 𝑈 given as quadratic
mappings.

A quadratic mapping may be reduced with function qstate12_reduce() without notice, whenever
appropriate.

Warning:

If an external function changes any component of a structure qs of type qstate12_type (or the
content of qs.data) then it must set qs.reduced to zero. The only legal way to

set qs.reduced to a nonzero value is to call function qstate12_reduce. The functions in this
module assume that qs is actually reduced if qs.reduced is not zero.

Public Members

uint32_t maxrows
No of entries of type uint64_t allocated to component data

uint32_t nrows
No 𝑚 + 1 of rows of bit matrix 𝐴 The value nrows = 0 encodes the zero mapping.

uint32_t ncols
No 𝑛 of columns of bit matrices 𝐴 and 𝑄.

int32_t factor

A integer 𝑒 encoding the complex scalar factor 𝑒′ = exp(𝑒𝜋
√
−1/4) · 2⌊𝑒/16⌋/2

uint32_t shape1
Describes the shape of the quadratic state matrix as explained above.

uint32_t reduced
This is set to 1 if the state is reduced and to 0 otherwise.

uint64_t *data
Pointer to the data bits of the matrix 𝑀 = (𝐴,𝑄).

3.4.3 C functions in bitmatrix64.c

File bitmatrix64.c contains functions for computing with bit matrices. A bit matrix of up to 64 columns
is stored in an array of integers of type uint64_t. If matrix m is stored in the array a then entry m[i,j]
is given by bit j of the entry a[i] of the array a. Here bit j has valence 2𝑗 .

In functions dealing with bit matrices we always give the number of rows as a parameter. In some functions
we also give the number of columns. In other functions we assume that there are 64 columns, with unused
columns ignored.

3.4. Description of the mmgroup.clifford12 extension 175



mmgroup, Release mmgroup v1.0.0

Functions

uint32_t uint64_parity(uint64_t v)
Returns the parity of a 64-bit integer v.

uint32_t uint64_low_bit(uint64_t v)
Returns position of lowest bit of a 64-bit integer v.

In case v = 0 the function returns 64.

uint32_t uint64_bit_len(uint64_t v)
Returns the bit length of a 64-bit integer v.

uint32_t uint64_bit_weight(uint64_t v)
Returns the bit weight of a 64-bit integer v.

uint32_t uint64_to_bitarray(uint64_t v, uint8_t *bl)
Convert 64-bit integer v to a bit list.

Return the (sorted) array bl of the positions of all bits set in the integer v. The function returns the
length of the computed array, which is equal to the bit weight of v. Array bl should have length at
least 64. The function is optimized for integers v of low bit weight.

void bitmatrix64_add_diag(uint64_t *m, uint32_t i, uint32_t j)
Add a diagonal matrix to a bit matrix.

Here bit matrix m has i rows.

We add one to all entries m[k, j+k] for 0 <= k < i`.

void bitmatrix64_mask_rows(uint64_t *m, uint32_t i, uint64_t mask)
Mask rows of a bit matrix.

Here bit matrix m has i rows.

We replace all rows m[k] of m by m[k] & mask. So we zero the entries m[i,j] for all j where bit
j is zero in parameter mask.

int32_t bitmatrix64_find_masked_row(uint64_t *m, uint32_t i, uint64_t mask, uint64_t v)
Find (masked) row of a bit matrix with a certain value.

Here bit matrix m has i rows.

The function returns the lowest index k such that m[k] & mask == v holds. The function returns
ERR_QSTATE12_NOTFOUND if no such k exists.

int32_t bitmatrix64_to_numpy(uint64_t *m, uint32_t rows, uint32_t cols, uint8_t *a)
Convert bit matrix to numpy array.

Here bit matrix m has rows rows and cols columns.

Then a bust be an array of rows * cols bytes length. The function writes the bit m[i,j] to a[i
* cols + j].

The function returns rows * cols in case of success and ERR_QSTATE12_NOTFOUND in case of
failure, e.g. if cols > 64.

void bitmatrix64_from_32bit(uint32_t *a32, uint32_t n, uint64_t *a64)
Copy array of 32-bit integers to array of 64-bit integers.

Copy the array a32 of n 32-bit integers to the array a64 of n 64-bit integers. Entries of the array are
zero extended.
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void bitmatrix64_to_32bit(uint32_t *a32, uint32_t n, uint64_t *a64)
Copy array of 64-bit integers to array of 32-bit integers.

Copy the array a64 of n 64-bit integers to the array a32 of n 32-bit integers. Upper 32 bits of the
entries are dropped.

uint32_t bitmatrix64_find_low_bit(uint64_t *m, uint32_t imin, uint32_t imax)
Find position of lowest bit in a bit matrix.

The function returns the lowest position k of a bit in the bit matrix m, which is set to one. It scans
only the bits at positions imin <= k < imax. If all bits at these positions are zero then the function
returns imax.

Here bit j of m[i] is considered at position 64*i + j. Bit matrix m should have at least (imax +
63) >> 6 entries.

void bitmatrix64_mul(uint64_t *m1, uint64_t *m2, uint32_t i1, uint32_t i2, uint64_t *m3)
Bit matrix multiplication.

Here m1 and m2 have i1 and i2 rows, respectively. Only the lowest i2 columns of m1 are inspected.
Matrix m2 may have any number of columns, up to 64.

The function computes the matrix product m1 * m2 in the array m3. Matrix m3 has i1 rows and the
same number of columns as m2.

Array m3 may be equal to array m1; but it may not overlap with m2.

uint64_t bitmatrix64_vmul(uint64_t v, uint64_t *m, uint32_t i)
Multiplication of a vector with a bit matrix.

Here matrix m has i rows; and v is a bit vector. The function returns the product of the bit vector
v with the bit matrix m. If bit vector v has k leading zero bits then only the lowest 64 - k rows of
matrix m are inspected.

int32_t bitmatrix64_rot_bits(uint64_t *m, uint32_t i, int32_t rot, uint32_t nrot, uint32_t n0)
Rotate columns of a bit matrix.

Here bit matrix m has i rows.

For n0 <= j < n0 + nrot we map column j of matrix m to column n0 + (j + rot) % nrot.
E.g. nrot = 3, rot = 1, n0 = 0 means that columns are mapped as 0->1, 1->2, 2->0.

The function returns 0 in case of success and a negative value if any column with index >= 64 is
involved in the rotation.

int32_t bitmatrix64_xch_bits(uint64_t *m, uint32_t i, uint32_t sh, uint64_t mask)
Exchange columns of a bit matrix.

Here bit matrix m has i rows.

Exchange column j with column j + sh of the bit matrix m, if bit j of mask is set. If bit j of mask
is set then bit j + sh of mask must not be set. No bit of mask at position greater or equal to 64 -
sh may be set.

E.g. qstate12_xch_bits(m, 1, 0x11) maps columns (. . . ,6,5,4,3,2,1,0) to columns
(. . . ,6,4,5,3,2,0,1).

The function returns 0 in case of success and a negative value if any column with index >= 64 is
involved in the operation.
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int32_t bitmatrix64_reverse_bits(uint64_t *m, uint32_t i, uint32_t n, uint32_t n0)
Reverse columns of a bit matrix.

Here bit matrix m has i rows.

The function reverses n columns of the bit matrix m starting at column n0. So it exchanges bit m[k,
n0 + j] with bit m[k, n0 + n - 1 - j] for 0 <= j < n and 0 <= k < i`.

The function returns 0 in case of success and a negative value if any column with index >= 64 is
involved in the operation.

int32_t bitmatrix64_t(uint64_t *m1, uint32_t i, uint32_t j, uint64_t *m2)
Transpose a bit matrix.

Here m1 is an i times j bit matrix. Here bit m1[m,n] is given by (m1[m] >> n) & 1. The function
writes the transposed bit matrix of m1 to m2.

uint32_t bitmatrix64_echelon_h(uint64_t *m, uint32_t i, uint32_t j0, uint32_t n)
Convert bit matrix m to reduced row echelon form.

Matrix m has i rows. Here we assume that the leading bit of a row of matrix m is the most significant
bit in that row. For echelonizing m, we pivot over nolumns j0-1,...,j0-n in that order, ignoring
the other columns. We perform row operations (on all possible columns 0,. . . ,63) for changing matrix
m.

The function returns the number of rows in the (echelonized) matrix m that have a nonzero bit in at
least one of the pivoted columns.

uint32_t bitmatrix64_echelon_l(uint64_t *m, uint32_t i, uint32_t j0, uint32_t n)
Convert bit matrix m to reduced row echelon form.

Matrix m has i rows. Here we assume that the leading bit of a row of matrix m is the least significant
bit in that row. For echelonizing m, we pivot over columns j0,...,j0+n-1 in that order, ignoring the
other columns. We perform row operations (on all possible columns 0,. . . ,63) for changing matrix m.

The function returns the number of rows in the (echelonized) matrix m that have a nonzero bit in at
least one of the pivoted columns.

int32_t bitmatrix64_cap_h(uint64_t *m1, uint64_t *m2, uint32_t i1, uint32_t i2, uint32_t j0,
uint32_t n)

Compute intersection of row spaces of two bit matrices.

Bit matrix m1 has i1 rows, and bit matrix m2 has i2 rows. Both matrices, m1 and m2, must be given
in reduced echelon form in the sense of function bitmatrix64_echelon_h.

The function changes m1 and m2 using row operations in such a way that the lower rows of m1 and m2
contain the intersection of the rows spaces of the two matrices. For computing that intersection we
consider only columns j0-1,...,j0-n of matrices m1 and m2. However, we do each row operation
on all possible columns 63,...,0.

The function returns the dimension n_cap of the intersection of the row spaces of m1 and m2, ignoring
all columns except for columns j0-1,...,j0-n.

Assume that the echelonized input matrices m1 (and m2) have r1 (and r2) leading rows that have
at least one nonzero bit in columns j0-1,...,j0-n, respectively. Then the function changes the
leading r1 rows of m1 and the leading r2 rows of m2 only. These rows are changed in such a way
that the last n_cap of these rows of the two matrices are equal in columns j0-1,...,j0-n. So
these last rows contain the intersection of the row spaces of m1 and m2`, ignoring all columns but
j0-1,...,j0-n.
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Parameters j0 and n must be the same in this function, and in the previous two calls to function
bitmatrix64_echelon_h used for echelonizing matrices m1 and m2. This function computes
garbage in the arrays m1 and m2, unless both matrices, m1 and m2, have been echelonized in that
way before calling this function.

A negative return value n_cap means that at least one of the input matrices m1 and m2 has not been
echelonized correctly. This function may or may not detect an incorrect echelonization of an input
matrix.

int32_t bitmatrix64_inv(uint64_t *m, uint32_t i)
Bit matrix inversion.

Here mhas i rows and i columns. i <= 32 must hold. The function inverts matrix m in place.

It returns 0 in case of success and ERR_QSTATE12_MATRIX_INV if m is not invertible.

int64_t bitmatrix64_solve_equation(uint64_t *m, uint32_t i, uint32_t j)
Solve a linear bit equation.

Let M be the bit matrix with i rows and j columns stored in the array m in the usual way. Let v be
the column bit vector stored in column j of the array m.

Then the function tries to solve the equation transpose(v) * m = x If such a solution x exists
then the function returns the transposed vector of the column vector x as a nonnegative integer.

The function returns ERR_QSTATE12_MATRIX_INV if no solution x exists. As a side effect, it echel-
onizes the lowest j + 1 columns of matrix m with function bitmatrix64_echelon_h.

3.4.4 C functions in uint_sort.c

File uint_sort.c contains functions for sorting arrays of unsigned 32-bit and 64-bit integers.

Functions

void bitvector32_copy(uint32_t *a_src, uint32_t n, uint32_t *a_dest)
Copy an array to type uint32_t[]

Copy the array a_src of length n to a_dest. Any kind of overlap is supported.

void bitvector32_heapsort(uint32_t *a, uint32_t n)
Sort an array a of length n with heap sort.

Here a is an array of n integers of type uint32_t. The array is sorted in place. The function is
exported for debuging. You should use function bitvector32_sort.

void bitvector32_sort(uint32_t *a, uint32_t n)
Sort an array a of type uint32_t[] of length n

Here a is an array of n integers of type uint32_t. The array is sorted in place.

We use quicksort as the main sorting algorithm. If quicksort reaches a certain recursion level then
we switch to heap sort. This guarantees a run time of 𝑂(𝑛 𝑙𝑜𝑔(𝑛)). For small arrays we use insert
sort.

void bitvector64_copy(uint64_t *a_src, uint32_t n, uint64_t *a_dest)
Copy an array to type uint64_t[]

Copy the array a_src of length n to a_dest. Any kind of overlap is supported.
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void bitvector64_heapsort(uint64_t *a, uint32_t n)
Sort an array a of length n with heap sort.

Here a is an array of n integers of type uint64_t. The array is sorted in place. The function is
exported for debuging. You should use function bitvector64_sort.

void bitvector64_sort(uint64_t *a, uint32_t n)
Sort an array a of type uint64_t[] of length n

Here a is an array of n integers of type uint64_t. The array is sorted in place.

We use quicksort as the main sorting algorithm. If quicksort reaches a certain recursion level then
we switch to heap sort. This guarantees a run time of 𝑂(𝑛 𝑙𝑜𝑔(𝑛)). For small arrays we use insert
sort.

3.4.5 C functions in qstate12.c

File qstate12.c contains functions for quadratic state matrices as described in the API reference in section
Computation in the Clifford group.

C functions in this module are prefixed with qbstate12_. Unless otherwise stated, these functions return
an int32_t, where a nonegative value is interpreted as success, and a negative value is intepreted as
failure. Error codes are documented in file clifford12.h.

Typical names for parameters of functions in this module are:

Name | Parameter type
-------------- | ----------------------------------------------
pqs, pqs1, ... | Pointer to structure of type qbstate12_type
nqb | Number of qubits, i.e. of columns of matrix

| A in a structure of type qbstate12_type.
nrows | Number of rows of matrix A or Q

| in a structure of type qbstate12_type.
i, i1, ... | Index of a row of matrix A or Q ,

| starting with 0.
j, j1, ... | Index of a column of matrix A , with a

| column of A , corrsesponding to a qubit,
| starting with j = 0.
| If appropriate, an index j >= ncols refers
| to column (j - ncols) of matrix Q .

pv, pv1,... | Pointer to a row or column vector of matrix
| A, Q or M .

Functions

int32_t qstate12_check(qstate12_type *pqs)
Check a structure of type qstate12_type.

Return 0 if ok, or an error code if there is any error in the structure referred by pqs. Part Q[i,0] is
set to Q[0, i]. Part Q[0,0] is set ot 0. Irrelevant data bits in valid data rows are zeroed.

int32_t qstate12_set_mem(qstate12_type *pqs, uint64_t *data, uint32_t size)
Assign memory to a structure of type qstate12_type.

Assign the array data of size integers of type uint64_t as memory to structure of type
qstate12_type referred by pqs.

180 Chapter 3. The C interface of the mmgroup project



mmgroup, Release mmgroup v1.0.0

int32_t qstate12_zero(qstate12_type *pqs, uint32_t nqb)
Set a structure of type qstate12_type to a zero vector.

Set the structure referrred by pqs to a zero column vector of length 2**nqb, corresponding to the
zero state of nqb qubits.

int32_t qstate12_vector_state(qstate12_type *pqs, uint32_t nqb, uint64_t v)
Set a structure of type qstate12_type to a state vector.

Set the structure referrred by pqs to a unit column vector |v> of length 2**nqb. Thus for the
quadratic mapping qs referred by pqs we have qs(x) = 1 if x is equal to the bit vector v and
qs(x) = 0 otherwise.

int32_t qstate12_set(qstate12_type *pqs, uint32_t nqb, uint32_t nrows, uint64_t *data, uint32_t
mode)

Set a data in a structure of type qstate12_type

Set pqs->nqb = nqb so that the state qs referred by pqs corresponds to a column vector of length
2**nqb. Set pqs->nrows = nrows, and copy nrows rows of the array data to pqs->data.

If mode == 1 then copy the upper triangular part of the data bit matrix part Q to the lower triangular
part.

If mode == 2 then copy the lower triangular part of the data bit matrix part Q to the upper triangular
part.

Otherwise the part Q of the data bit matrix must be symmetric.

The resulting state is checked with function qstate12_check().

int32_t qstate12_copy(qstate12_type *pqs1, qstate12_type *pqs2)
Copy a state of type qstate12_type to another state.

Copy the data in the state referred by pqs1 to the data in the state referred by pqs2. Memory must
have been allocated to the state pqs2 with function qstate12_set_mem()

int32_t qstate12_copy_alloc(qstate12_type *pqs1, qstate12_type *pqs2, uint64_t *data, uint32_t
size)

Copy a state of type qstate12_type and allocate mamory.

Equivalent to

qstate12_set_mem(pqs2, data, size);
qstate12_copy(pqs1,pqs2);

int32_t qstate12_factor_to_complex(int32_t factor, double *pcomplex)
Convert a scalar factor to a complex number.

The function takes a scalar factor (as given by the component factor in the structure qstate12)
and converts that factor to a complex number. The real part of the result is returned in pcomplex[0]
and the imaginary part in pcomplex[1].

Caution:

If bit 3 of factor is set then the function calculates the complex number 0.

The function returns:

4 if the result is complex, but not real.

(continues on next page)
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(continued from previous page)

3 if the result is real, but not rational.

2 if the result is rational, but not integral.

1 if the result is integral, but not zero.

0 if the result is zero.

ERR_QSTATE12_SCALAR_OVFL in case of overflow or underflow

int32_t qstate12_factor_to_int32(int32_t factor, int32_t *pi)
Convert a scalar factor to a 32-bit integer.

The function takes a scalar factor (as given by the component factor in the structure qstate12)
and converts that factor to an integer. That integer is stored in pi[0].

Caution:

If bit 3 of factor is set then the function calculates the integer zero.

The function returns:

1 if the result is integral, but not zero.

0 if the result is zero.

ERR_QSTATE12_SCALAR_OVFL in case of overflow or underflow

ERR_QSTATE12_SCALAR_INT if the result is not an integer

int32_t qstate12_conjugate(qstate12_type *pqs)
Conjugate the state referred by pqs

The function changes the state referred by pqs to its complex complex state.

int32_t qstate12_mul_scalar(qstate12_type *pqs, int32_t e, uint32_t phi)
Multiply the state referred by pqs by a scalar.

The function multiplies the state qs referred by pqs with the scalar

2**(e/2) * exp(phi * pi * sqrt(-1) / 4) .

int32_t qstate12_abs(qstate12_type *pqs)
Replace entries of a state by their absolute values.

The function replaces the entries of the state referred by pqs by their absolute values.

uint64_t qstate12_get_column(qstate12_type *pqs, uint32_t j)
Return column j of the bit matrix M stored in pqs->data as a bit vector in an integer of type uin64_t.

int32_t qstate12_del_rows(qstate12_type *pqs, uint64_t v)
Delete all rows i, 1 <= i < pqs->nrows, from the bit matrix M stored in pqs->data, if bit i in
the bit vector *pv is set. Here we also adjust the quadratic form Q which is part of the bit matrix M.
Row 0 is never deleted.

int32_t qstate12_insert_rows(qstate12_type *pqs, uint32_t i, uint32_t nrows)
Insert nrows zero rows into the bit matrix M stored in pqs->data, starting before row i. The corre-
sponding zero columns of the quadratic form Q, which is part of the bit matrix M, are also inserted. 1
<= i <= nrows must hold. This process multiplies the state vector by the scalar 2**nrows.
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int32_t qstate12_mul_Av(qstate12_type *pqs, uint64_t v, uint64_t *pw)
Let M be the bit matrix stored in pqs->data. We return the matrix product w = A *
Transposed(v), where A is the A part of the bit matrix M, as a bit vector.

int32_t qstate12_rot_bits(qstate12_type *pqs, int32_t rot, uint32_t nrot, uint32_t n0)
Rotate qubit arguments of the state qs referred by pqs.

For n0 <= i < n0 + nrot we map qubit i to qubit n0 + (i + rot) % nrot. E.g. nrot = 3,
rot = 1, n0 = 0 means that bits are mapped as 0->1, 1->2, 2->0. Let nn1 = pqs->ncols.
Then the function changes the quadratic mapping qs to referred by pqs to qs1 with

qs1(x[nn1-1],...,x[n0+nrot],y[nrot-1],...,y[0],x[n0-1],...,x[0])
= qs(x[nn1-1],...,x[n0+nrot],z[nrot-1],...,z[0],x[n0-1],...,x[0]),

where z[j] = y[j - rot (mod 3)].

int32_t qstate12_xch_bits(qstate12_type *pqs, uint32_t sh, uint64_t mask)
Exchange qubit arguments of the state qs referred by pqs.

Exchange qubit j with argument bit j + sh of the state qs referred by pqs, if bit j of mask is set.
If bit j of mask is set then bit j + sh of maskmust not be set. No bit of mask at position greater or
equal to pqs->ncols - sh may be set.

E.g. qstate12_xch_bits(pqs, 1, 0x11) changes the quadratic mapping qs to qs1 with

qs1(...,x6,x5,x4,x3,x2,x1,x0) = qs(...,x6,x4,x5,x3,x2,x0,x1) .

void qstate12_pivot(qstate12_type *pqs, uint32_t i, uint64_t v)
Auxiliary function for function qstate12_reduce().

Let M be the bit matrix stored in pqs->data. The pivoting process is controlled by the bit vector v.
If k < i and bit k of vis set then row i of bit matrix Mis xored to row k of M. The columns of the part
Q of M are also adjusted. 1 <= i < pqs->nrows must hold. Pivoting does not change the state.

For internal use only. Input conditions are not checked.

int32_t qstate12_sum_up_kernel(qstate12_type *pqs)
Auxiliary function for function qstate12_reduce().

Sum up the kernel of the transformation matrix A, which is part of the bit matrix M = pqs->data.
We assume that A is echelonized in the sense that all nonzero rows of A are linear independent and
that they occur before the zero rows.

int32_t qstate12_echelonize(qstate12_type *pqs)
Convert the state represented by pqs to echelon form.

The representation state referred by pqs is converted to (not necessarily reduced) echelon form, and
the kernel of bit matrix A, which is part of the bit matrix M = pqs->data is summed up as described
in the guide, section ‘Reducing the representation of a quadratic mapping’. The representation of the
state is not changed if this is already the case.

This function does not change the state.

int32_t qstate12_check_reduced(qstate12_type *pqs)
Check if the state represented by pqs is reduced.

The function puts pqs->reduced = 1 if the state is reduced; and it performs no action on pqs
otherwise. It returns the updated value of pqs->reduced (which is 0 or 1) in case of success, and a
negative value in case of failure.
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This check is much faster than actually performing a reduction. The function may perform some easy
reduction steps on the state.

int32_t qstate12_reduce(qstate12_type *pqs)
Reduce the state represented by pqs

The representation state referred by pqs is converted to reduced echelon form, and the kernel of bit
matrix A, which is part of the bit matrix M = pqs->data is summed up as described in the guide,
section ‘Reducing the representation of a quadratic mapping’. The representation of the state is not
changed if this is already the case.

This function does not change the state.

int32_t qstate12_row_table(qstate12_type *pqs, uint8_t *row_table)
Compute a certain table for the state referred by pqs

Compute a row table for the state qs referred by pqs. Here qs must be in (not necessarily reduced)
echelon form.

The function computes row_table[j] = i if the leading bit of row i of part A of the bit matrix
M = pqs->data is in column j, for 0 <= j < pqs->ncols and 1 <= i < pqs->nrows. If now
such row exists for column j then we put row_table[j] = QSTATE12_UNDEF_ROW.

The representation of the state is not changed.

int32_t qstate12_equal(qstate12_type *pqs1, qstate12_type *pqs2)
Check equality of two states.

Return 1 if the states referred by pqs1 and pqs2 are equal, 0 if not, and a negative number in case of
error. Both states are reduced before comparing them.

int32_t qstate12_extend_zero(qstate12_type *pqs, uint32_t j, uint32_t nqb)
Insert qubits into a state and set them to 0.

We insert nqb zero qubits into the state qs referred by pqs starting at position j.

Let n = pqs->ncols so that the state qs referred by pqs depends on n qubits. We change qs to the
following state qs1 depending on n + nqb qubits:

qs1(x[n-1],...,x[j],y[nqb-1],...,y[0],x[j-1]...,x[0]) is equal to qs(x[n-1],...,
x[j],x[j-1]...,x[0]) if y[0] = ... = y[nqb-1] = 0 and equal to zero otherwise. So we
increment pqs->ncols by nqb.

If the input is reduced then the result is also reduced. pqs->shape1 is set to 0, i.e. a column vector
is returned.

int32_t qstate12_extend(qstate12_type *pqs, uint32_t j, uint32_t nqb)
Insert qubits into a state.

We insert nqb qubits into the state qs referred by pqs starting at position j.

Let n = pqs->ncols so that the state qs referred by pqs depends on n qubits. We change qs to the
following state qs1 depending on n + nqb qubits:

qs1(x[n-1],...,x[j],y[nqb-1],...,y[0],x[j-1]...,x[0]) is equal to qs(x[n-1],...,
x[j],x[j-1]...,x[0]). So we increment pqs->ncols by nqb.

The result is not reduced. pqs->shape1 is set to 0, i.e. a column vector is returned.

int32_t qstate12_sum_cols(qstate12_type *pqs, uint32_t j, uint32_t nqb)
Sum up the functional values for some qubits.

We sum up nqb qubits of the state qs referred by pqs starting at position j.
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Let n = pqs->ncols so that the state qs referred by pqs depends on n qubits. We change qs to the
following state qs1 depending on n - ncols qubits:

qs1(x[n-1],...,x[j+nqb],x[j-1],...,x[0]) = sum_{x[j+nqb-1],...,x[j]}
qs1(x[nn1-1],...,x[0]) . So we decrement pqs->ncols by nqb.

The output is not reduced. pqs->shape1 is set to 0, i.e. a column vector is returned.

int32_t qstate12_restrict_zero(qstate12_type *pqs, uint32_t j, uint32_t nqb)
Restrict nqb qubits starting at postion j to 0.

Let n = pqs->ncols so that the state qs referred by pqs depends on n qubits. We change qs to the
following state qs1 depending on n qubits:

qs1(x[n-1],...,x[0]) is equal to qs(x[n-1],...,x[0]) if x[j] = ... = x[j+nqb-1] =
0 and equal to zero otherwise. We do not change the shape of qs.

The output is reduced if the input is reduced.

int32_t qstate12_restrict(qstate12_type *pqs, uint32_t j, uint32_t nqb)
Restrict some qubits to 0 and delete them.

Similar to function qstate12_restrict_zero, but with deleting the restricted qubits.

Let n = pqs->ncols so that the state qs referred by pqs depends on n qubits. We change qs to the
following state qs1 depending on n1 = n - nqb qubits:

qs1(x[n1-1],...,x[0]) is equal to qs(x[n1-1],...,x[j],0,...,0,x[j-1],...,x[0]).
So we decrement pqs->ncols by nqb.

The output is not reduced. pqs->shape1 is set to 0, i.e. a column vector is returned.

In quantum computing theory this operation can be interpreted as measurement of the corresponding
qubits with postselection, setting all measured qubits to 0.

int32_t qstate12_gate_not(qstate12_type *pqs, uint64_t v)
Apply a not gate to a state.

Change the state qs referred by pqs to a state qs1 with qs1(x) = qs(x (+) v), where '(+)' is
the bitwise xor operation. The result is not reduced.

Computing qstate12_gate_not(pqs, 1 << j) corresponds to negating qubit j.

int32_t qstate12_gate_ctrl_not(qstate12_type *pqs, uint64_t vc, uint64_t v)
Apply a contol-not gate to a state.

Change the state qs referred by pqs to a state qs1with qs1(x) = qs(x (+) <vc,x> * v), where
'(+)' is the bitwise xor operation, and <.,.> is the scalar product of bit vectors. The result is not
reduced. The scalar product of the bit vectors j and jc must be zero. Otherwise the ctrl not
operation is not unitary.

Computing qstate12_gate_ctrl_not(pqs, 1 << jc, 1 << j), for jc != j, corresponds to
applying a controlled not gate to qubit j, contolled by qubit jc.

int32_t qstate12_gate_phi(qstate12_type *pqs, uint64_t v, uint32_t phi)
Apply a phase gate to a state.

Change the state qs referred by pqs to a state qs1 with qs1(x) = qs(x) * sqrt(-1)**(phi *
<v,x>), where <.,.> is the scalar product of bit vectors and '**' denotes exponentiation. The
result is reduced if the input is reduced. Computing qstate12_gate_ph(pqs, 1 << j, phi)
corresponds to applying a phase (phi * pi/2) gate to qubit j.
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int32_t qstate12_gate_ctrl_phi(qstate12_type *pqs, uint64_t v1, uint64_t v2)
Apply a controlled phase gate to a state.

Change the state qs referred by pqs to a state qs1with qs1(x) = qs(x) * (-1)**(<v1,x>*<v2,
x>), where <.,.> is the scalar product of bit vectors and '**' denotes exponentiation.

The result is reduced if the input is reduced. Computing qstate12_gate_ctrl_phi(pqs, 1 <<
j1, 1 << j2) corresponds to applying a phase pi gate to qubit j2 controlled by qubit j1.

int32_t qstate12_gate_h(qstate12_type *pqs, uint64_t v)
Apply Hadamard gates to a state.

Apply a Hadamard gate to all qubits j of the state qs (referred by pqs) with v & (1 << j) ==
1. Applying a Hadamard gate to gate j changes a state qs to a state 1/sqrt(2) * qs1, where
qs1(..,x[j+1],x_j,x[j-1],..) = qs(..,x[j+1],0,x[j-1],..)

• (-1)**(x_j) * qs(..,x[j+1],1,x[j-1],..) . The result is not reduced.

3.4.6 C functions in qstate12io.c

File qstate12io.c contains functions for converting quadratic state matrices as described in the API
reference in section Computation in the Clifford group to complex numbers.

The function in this module are coded according the conventions in module qstate12.c.

Functions

int32_t qstate12_complex(qstate12_type *pqs, double *pc)
Expand a state to an array of complex numbers.

Expand the state qs referred by pqs to the array referred by the pointer pc. The real part of qs[i] is
stored in pc[2*i] and the imaginary part of qs[i] is stored in pc[2*i+1]. The function reduces
qs. Here the integer i is interpreted as a bit vector as usual.

pqs->shape1 is ignored. The user has to care for the shape of the returned array. The state qs is
reduced.

Caution: The function sets 2 * 2**pqs->ncols entries in the array pc.

Return value is as in function qstate12_entries.

int32_t qstate12_entries(qstate12_type *pqs, uint32_t n, uint32_t *v, double *pc)
Convert entries of a state to complex numbers.

The function computes the entries qs[v[i]] of the state qs referred by pqs for 0 <= i < n and
stores these entries in the array pc. The real part of qs[v[i]] is stored in pc[2*i] and the imaginary
part is stored in pc[2*i+1]. The state qs is reduced.

Caution: The function sets 2 * n entries in the array pc.

Depending on the computed matrix entries, the function returns

4 if all entries are complex, but not all are real.

3 if all entries are real, but not all are rational.

2 if all entries are rational, but not all are integers.

(continues on next page)
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(continued from previous page)

1 if all entries are integers, but not all are zero.

0 if all entries are zero.

A negative return value indicates an error.

int32_t qstate12_int32(qstate12_type *pqs, int32_t *pi)
Expand a state to an array of 32-bit integers.

Expand the state qs referred by pqs to the array of integers (of type int32_t) referred by the pointer
pi. Here qs[i] is stored in pi[i]. The function reduces qs. The integer i is interpreted as a bit
vector as usual.

pqs->shape1 is ignored. The user has to care for the shape of the returned array. The state qs is
reduced.

Caution: The function sets 2**pqs->ncols entries in the array pc.

The function returns 0 in case of success, and a negative value in case of error, e.g. if qs is not
integral or in case of integer overflow.

int32_t qstate12_to_signs(qstate12_type *pqs, uint64_t *bmap)
Store the signs of a real quadratic state in an array.

Let qs be the quadratic state matrix referred by pqs. Assume that qs is real and has shape (I, J). Let
t[i * 2**J + j] = 0, 1, or 3, if entry qs[i, j] is zero, positive, or negative, respectively.
Then we store t[k] in bits 2 * l + 1, 2 * l of bmap[k >> 5], with l = k & 0x1f.

The function returns 0 in case of success, and a negative value in case of error, e.g. if qs is not a real
matrix.

int32_t qstate12_compare_signs(qstate12_type *pqs, uint64_t *bmap)
Compare signs of a real quadratic state with an array.

Let qs and bmap as in function qstate12_to_signs. The function returns 1 if the signs of qs are
stored in in bmap as described in function qstate12_to_signs. Otherwise the function returns 0.
The function also returns 0 if matrix qs is not real. It returns a negative value in case of an error.

int32_t qstate12_from_signs(uint64_t *bmap, int32_t n, qstate12_type *pqs)
Construct a state vector from a sign matrix.

Let bmap be an array with 2**n entries representing 0 or (positive or negative) signs as in function
qstate12_to_signs. Then bmap may correspond to a quadratic state vector with entries 0, 1, and
-1.

If these enrties correspond to a quadratic state vector V (with entries 0, 1, and -1) then the function
stores V in the quadratic state vector qs referred by pqs and returns 0. The returned state qs is
a (column) vector of shape (0, n). If the array bmap does not correspond to any quadtatic state
vector then the function sets qs to the zero vector of shape (0, n)and returns -1.

The function returns negative value less than -1 in case of an error.

int32_t qstate12_mul_matrix_mod3(qstate12_type *pqs, uint64_t *v, uint64_t w)
Compute a certain product modulo 3 with a state matrix.

Let qs be the quadratic state matrix referred by pqs. Assume that qs is rational and has shape (I,
J). Let q be the row vector of length 2**(I+J) with q[i * 2**J + j] = qs[i, j].
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We consider v as a 2**(I+J) times 32 matrix M of integers modulo 3 with M[k,l] stored in bits
2*l+1 and 2*l of entry v[k]. We consider w as a column vector of 32 integers mod 3 with w[l]
stored in bits 2*l+1 and 2*l of the variable w.

Then the function returns the matrix product q * M * v (modulo 3) as a nonnegative integer less
than 3. It returns a negative value in case of error, e.g. if qs is not rational.

3.4.7 C functions in qmatrix12.c

File qmatrix12.c contains basic functions for quadratic

state matrices as described in the API reference in section Computation in the Clifford group. The
functions is this module are based on the functions in module qstate.c and on the data structures defined
in module clifford12.h.

C functions in this module are prefixed with qbstate12_. Unless otherwise stated, these functions return
an int32_t, where a nonegative value is interpreted as success, and a negative value is intepreted as
failure. Error codes returned by functions in this module are documented in file clifford12.h.

A structure qs of type qstate12_type defines a function 𝑓 : F𝑛
2 → C and also a 2𝑛−𝑘 × 2𝑘 matrix 𝑀

with entries 𝑀 [𝑖, 𝑗] = 𝑓(2𝑘 · 𝑖 + 𝑗). Here we idenitfy the nonegative integers < 2𝑛 with the bit vectors
given by their binary representation. For the shape parameters 𝑛, 𝑘 of a state qs we have 𝑛 = qs.ncols,
𝑘 = qs.qstate1. Thus indices of vectors and matrices start with 0, as usual in C and python.

While the functions in module qstate.c mostly ingnore the shape parameter 𝑘, the functions in this
module use that shape parameter for determining the shape of a matrix.

Functions

int32_t qstate12_std_matrix(qstate12_type *pqs, uint32_t rows, uint32_t cols, uint32_t rk)
Create a standard matrix with entries 1 in the diagonal.

Create a standard matrix qs with 2**rows rows and 2**cols columns as an object of type
qstate12_type, and store the result in *pqs. Diagonal entries qs[i,i] are equal to one for ì
< 2**rk. All other entries of the matrix are zero. 0 <= rk < min(nows, cols) must hold.

int32_t qstate12_unit_matrix(qstate12_type *pqs, uint32_t nqb)
Create a unit matrix.

Create a unit matrix with 2**nqb rows and 2**nqb columns as an object of type qstate12_type,
and store the result in *pqs.

int32_t qstate12_monomial_column_matrix(qstate12_type *pqs, uint32_t nqb, uint64_t *pa)
Create matrix with one nonzero entry in each column.

Create a matrix Twith 2**nqb rows and 2**nqb columns as an object of type qstate12_type, and
store the result in *pqs.

Matrix T is a real 2**nqb times 2**nqb transformation matrix which is monomial in the sense
that each column contains exactly one nonzero entry 1 or -1. So left multiplication with T maps unit
vectors to (possibly negated) unit vectors. It transforms a complex column vector w of length 2**nqb
to a vector T * w.

pa refers to an array a of integers a[i] of length nqb + 1. Each integer a[i] is interpreted as a bit
field via its binary representation. So a[i,j] means (a[i] >> j) & 1. a[i, j1:j2] means the
bit field a[i,j1],...,a[i,j2-1].
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For any bit vector v of length nqb let |v> be the unit vector with index v. For any bit vector v of
length nqb + 1 let |v> be the (possibly negated) unit vector (-1)**v[nqb] * |v[0:nqb]>. |v1
^ v2> and |1 << v1> are defined via the corrresponding operators << and ^ in C.

Then T maps

|0> to |a[0, 0:nqb+1]>

|1 << i> to |a[0, 0:nqb+1] ^ a[i+1, 0:nqb+1]>

Tmaps unit vectors to (possibly negated) unit vectors, so T(v) is well defined by |T(v)> = T(|v>)
for a bit field v of length nqb + 1. We have

|T(v1 ^ v2)> = (-1)**Q(v1,v2) * |T(v1) ^ T(v2) ^ T(0)>,

for bit fields v1, v2 of length nqb + 1 and an alternating bilinear form Q depending on the lowest
nqb bits of v1 and v2 only. Thus T is defined by the above equation and Q. The bilinear form Q is
defined by:

Q(v1, v2) = Q(v2, v1), Q(v1, v1) = 0, and

Q(1 << i, 1 << j) = a[i + 1, j + nqb + 1]``,
for ``0 <= j < i < nqb``.

int32_t qstate12_monomial_row_matrix(qstate12_type *pqs, uint32_t nqb, uint64_t *pa)
Create matrix with one nonzero entry in each row.

Similar to qstate12_monomial_column_matrix(); but we create a matrix T which is
monomial in the sense that each row contains exactly one nonzero entry 1 or -1.
qstate12_monomial_row_matrix(*pqs, nqb, *pa) creates the transposed matrix of
qstate12_monomial_column_matrix(*pqs, nqb, *pa).

int32_t qstate12_monomial_matrix_row_op(qstate12_type *pqs, uint32_t *pa)
Obtain operation of a monomial quadratic state matrix.

A monomial matrix maps unit vectors to unit vectors, if we ignore scalar factors. Let qs be the
matrix referred by pqs. We assume that qs has exactly one nonzero entry in each row. Then right
multiplication with qsmaps unit vectors to unit vectors, up to a scalar factor. Otherwrise the function
returns ERR_QSTATE12_NOT_MONOMIAL.

If we label each unit vector by a bit vector then the operation of qs on these bit vectors labels is affine.
If qs has shape (r,c) then we compute an r+1 times c bit matrix a in the array referred by pa with
the following property:

Label (b[0],...,b[r-1]) is mapped to label (1, b[0],...,b[r-1]) * a.

The function returns the number r+1 of rows of a.

From bit matrix a we can construct a unique matrix qs1, of the same shape as qs, that maps unit
vectors to unit vectors as given by the mapping of the labels. In case r == c this can be done by
calling qstate12_monomial_row_matrix(pqs1, r, pa), where pqs1 points to a buffer for qs1.

Then qs can be obtained by multiplying qs1 with a diagonal matrix.

int32_t qstate12_mat_reshape(qstate12_type *pqs, int32_t rows, int32_t cols)
Change the shape of a matrix.

Reshape the matrix T referred by pqs will be a 2**rows times 2**cols matrix.
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The old shape of the matrix is (n-k, k)with n, k given by n = pqs->ncols, k = pqs->shape1.
Reshaping must not change the number of entries, so rows + cols == nmust hold. We follow the
convention in the python numpy package for reshaping matrices. Thus index [i,j] of a matrix
with shape (I,J) corresponds to the index i * 2**J + j in the one-dimensional array storing that
matrix.

If rows or cols is -1 then it is calculated from the old shape of the matrix. If both, rows and cols,
are -1 then rows is set to 0 and cols is calculated.

int32_t qstate12_mat_t(qstate12_type *pqs)
Transpose a matrix in place.

The quadratic state matrix qs referred by pqs is transposed in place. The result is not reduced.

int32_t qstate12_mat_trace(qstate12_type *pqs, double *p_trace)
Compute the trace of a quadratic state matrix.

The function computes the trace of the quadratic state matrix qs referred by pqs. The real part of
the trace is stored in p_trace[0] and the imaginary part is stored in p_trace[1]. The state qs is
reduced.

Return value is as in function qstate12_factor_to_complex.

int32_t qstate12_mat_itrace(qstate12_type *pqs, int32_t *p_itrace)
Compute the trace of a quadratic state matrix.

Similar to function qstate12_mat_trace, buth the trace is stored as an integer in p_itrace[0].

Return value is as in function qstate12_factor_to_int32.

int32_t qstate12_prep_mul(qstate12_type *pqs1, qstate12_type *pqs2, uint32_t nqb)
Auxiliary low-level function for function qstate12_product()

Prepare the states qs1 and qs2 referred by pqs1 and pqs2 for matrix multiplication. Here the sum-
mation in that operation runs over first nqb qubits of qs1 and qs2, regardless of the shape of the input
matrices. The function returns a number row_pos, so that, after preparation, the first nqb columns
of submatrices A1 and A2 of the bit matrices M1 and M2 corresponding to qs1 and qs2 will be equal
in the following sense:

A1[i,j] = A2[i,j] for i < 'row_pos', j < 'nqb' ,

A1[i,j] = A2[i,j] = 0 for i >= 'row_pos', j < 'nqb' .

Also, matrices A1 and A2 will both have rank row_pos - 1, when excluding row 0 of the two ma-
trices. Some rows of A1 or A2 may be deleted to achieve this situation. The result of the summation
of the matrix products of qs1 and qs2 over the first nqb columns (which is used by the matrix mul-
tiplication procedure) is not changed by this operation. Apart from this assertion, both states are
changed, and they may have less rows than before. They may even be changed to zero, if the result
of the multiplication is zero.

The algorithm used here is explained in the API reference in section Multiplication of quadratic
mappings. In the notation in that section the algorithm computes states qs1′, qs2′ with (qs1′ ⊙
qs2′)𝑛 = (qs1 ⊙ qs2)𝑛,, where 𝑛 = nqb.

pqs1->shape1 and pqs2->shape1 are ignored.

int32_t qstate12_product(qstate12_type *pqs1, qstate12_type *pqs2, uint32_t nqb, uint32_t nc)
Compute a certain product of two states.

Compute a certain product qs3 of the states qs1 and qs2 referred by pqs1 and pqs2 and store the
(reduced) result in *pqs1. Overlap between pqs1 and pqs2 is possible. qs2 is not changed.
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Let n1 = pqs1->ncols, n2 = pqs2->ncols. Put qs1a = qstate12_extend(qs, n1,
n2-nqb), qs2a = qstate12_extend(qs, nqb, n1-nqb). Then qs1a and qs2a are complex
functions on (nn1 + nn2 - nqb) bits. Let qs3a be the complex function which is the product of
the functions qs1a and qs2a. Then we have qs3 = qstate12_sum_cols(qs3a, 0, nc).

E.g. qstate12_product(pqs1, pqs2, nc, nc) is the tensor contraction over the first
nc qubits of qs1 and qs2. In case pqs1->ncols = pqs2->ncols = n the function
qstate12_product(pqs1, pqs2, n, 0) returns the product of qs1 and qs2 (considered as func-
tions). Furthermore, and qstate12_product(pqs1, pqs2, n, n) returns the scalar product of
qs1 and qs2 (considered as vectors).

In general, qstate12_product(pqs1, pqs2, n, 0) corresponds to the function (qs1′ ⊙ qs2′)𝑛
defined in section Products and tensor products of quadratic mappings of the API reference.

pqs1->shape1 is set to 0. The user should set pqs1->shape1 to a reasonable value.

int32_t qstate12_matmul(qstate12_type *pqs1, qstate12_type *pqs2, qstate12_type *pqs3)
Compute the matrix product of two matrices.

Compute the matrix product qs3 of the matices qs1 and qs2 referred by pqs1 and pqs2 and store
the (reduced) result in *pqs3. Overlap between pqs1, pqs2, pqs3 is possible.

If qs1 has shape (r1,c1) and qs2 has shape (r2,c2) then c1 == r2must hold, and qs3 has shape
(r1,c2)

Note that a shape (r,c) of a matrix qsmeans a 2**r times 2**cmatrix, where r+c == qs.ncols,
c = qs.shape1.

int32_t qstate12_pauli_vector(qstate12_type *pqs, uint64_t *pv)
Check if a matrix is in the Pauli group and convert it to a vector.

The Pauli group of 𝑛 qubits is the normal subgroup of the Clifford group of 𝑛 qubits generated by
the not gates, the phase 𝜋 gates, and by the scalar multiples of the unit matrix by a fourth root of
unity.

We represent an element of the Pauli group as a product of 2𝑛 + 2 generators of order 2 or 4. The
sequence of these exponents is stored in a bit vector (coded as an integer) as follows:

Bit 2n+1: a scalar factor sqrt(-1)

Bit 2n: a scalar factor -1

Bit n+i: a not gate applied to qubit i, 0 <= i < n

Bit i: a phase pi gate applied to qubit i, 0 <= i < n

See section The Pauli group in the API reference for details.

If the matrix qs referred by pqs is in the Pauli group of 𝑛 qubits then the function returns 𝑛 and stores
qs as an element of the Pauli group in the vector v referred by pv. Otherwise the function returns a
negative error code.

int32_t qstate12_pauli_matrix(qstate12_type *pqs, uint32_t nqb, uint64_t v)
Convert element of the Pauli group to a matrix.

Here parameter v encodes an element of the Pauli group of nqb qubits as described in function
qstate12_pauli_vector(). The function converts v to a matrix of shape (nqb, nqb) in the Clifford
group and stores the result in the state referred by pqs.
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uint64_t qstate12_pauli_vector_mul(uint32_t nqb, uint64_t v1, uint64_t v2)
Multiplication of two elements of the Pauli group.

Here parameters v1 and v2encode two elements of the Pauli group of nqb qubits as described in
function qstate12_pauli_vector().

The function returns the product v1 * v2 encoded in the same way.

uint64_t qstate12_pauli_vector_exp(uint32_t nqb, uint64_t v, uint32_t e)
Exponentiation of an element of the Pauli group.

Here parameter v1 encodes an element of the Pauli group of nqb qubits as described in function
qstate12_pauli_vector().

The function returns the power v1 ** e encoded in the same way.

The Pauli group has exponent 4, so qstate12_pauli_vector_exp(nqb, v1, 3) returns the in-
verse of v1.

int32_t qstate12_reduce_matrix(qstate12_type *pqs, uint8_t *row_table)
Perform a special reduction on a quadratic state matrix.

This function performs a special reduction on the quadratic state matrix qs referred by pqs, as de-
scribed in the API reference**, section Reducing a quadratic state matrix.

This kind of reduction is differnt from the reduction in function qstate12_reduce(). It is
used internally for computing traces and norms of matrices. It is also used in function qs-
tate12_pauli_conjugate().

The function also computes a table with pqs->nrows + pqs->ncols entries in the array referred
by parameter row_table which is used internally for the operations mentioned above.

int32_t qstate12_mat_lb_rank(qstate12_type *pqs)
compute the rank of a quadratic state matrix

Let qs be the quadratic state matrix referred by pqs. The function returns the binary logarithm of
the rank of matrix qs, which is an integer in case of the nonzero matrix. It returns -1 if qs is the zero
matrix. A return value less than -1 is an error code. Matrix qs is reduced.

int32_t qstate12_mat_inv(qstate12_type *pqs)
Compute the inverse of a quadratic state matrix.

Let qs be the quadratic state matrix referred by pqs. The function computes the (reduced) inverse
of matrix qs in place. It returns ERR_QSTATE12_MATRIX_INV if the matrix is not invertible.

int32_t qstate12_to_symplectic(qstate12_type *pqs, uint64_t *pA)
Convert quadratic state matrix to a symplectic bit matrix.

Here the quadratic state matrix qs referred by pqs must be of shape (k, k) and invertible. The
function computes a 2k times 2k bit matrix A.

If vis a bit vector representing an element of the Pauli group then v * A represents the element qs
* v * qs^{-1} of the Pauli group, up to a scalar factor. Elements of the Pauli group of k qubits
are encoded as in function qstate12_pauli_vector(), ignoring the bits at positions 2k and 2k +
1. So pA[i] will contain the image of the i-th basis vector of the Pauli group, with bits 2k and 2k
+ 1 set to zero.

The function returns 2*k in case of success and a negative value in case of an error. In any case it
suffices if the array referred by pA has 32 entries.
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This function can be considered as a simplified version of function qstate12_pauli_conjugate.
It computes the natural homomorphism from the group of invertible quadratic state matrices shape
(k, k) to the symplectic group S2𝑘(2).

int32_t qstate12_to_symplectic_row(qstate12_type *pqs, uint32_t n)
Conjugate unit vector in Pauli group by quadratic state matrix.

Here the quadratic state matrix qs referred by pqs must be of shape (k, k) and invertible.

Let v be the bit vector with bit n set and the other bits cleared. Here elements of the Pauli group of
k qubits are encoded as in function qstate12_pauli_vector(), ignoring the bits at positions 2k
and 2k + 1.

The function returns the element qs * v * qs^{-1} of the Pauli group, up to a scalar factor as an
integer, encoded in the same way as input vector v, ignoring the scalar factor.

Thus in case of success the return value is the same as row n of the matrix computes by function
qstate12_to_symplectic_row. The function returns a negative value in case of an error.

int32_t qstate12_pauli_conjugate(qstate12_type *pqs, uint32_t n, uint64_t *pv, uint32_t arg)
Conjugate Pauli group elements with a Clifford group element.

Here the quadratic state matrix qs referred by pqsmust be of shape (k,k) and invertible. The array
v referred by pv has n entries v[0],...,v[n-1]. Each of these entries is interpreted as an element
of the Pauli group of k qubits, encoded as in function qstate12_pauli_vector().

The function replaces v[i] by the Pauli group element w[i] = qs * v[i] * qs**(-1) for all i
< n. w[i] is encoded in the same way as v[i].

Parameter arg should usually be a nonzero value. In case arg == 0 the (complex) argument of the
outputs v[i] is not computed.

This function uses function qstate12_reduce_matrix(). The operation of this function is ex-
plained in the API reference, section Reducing a quadratic state matrix .

3.4.8 Computing in the subgroup 𝐺𝑥0 of the Monster

The functions in file xsp2co1.c implement the group operation of the subgroup 𝐺𝑥0 (of structure 21+24.Co1) of the
monster.

Represenation of 𝐺𝑥0 on the tensor product 4096𝑥 ⊗ Λ

In [Sey20], section 7.4 and 9, the generators 𝑥𝑑, 𝑥𝛿, 𝑦𝛿, 𝑥𝜋, 𝜉 of 𝐺𝑥0 are also defined as generators of a group 𝐺𝑥1 ⊂
𝐺(4096𝑥) ×𝐺(24𝑥). Here 𝐺(4096𝑥) is a subgroup of the real Clifford group 𝒞12 operating on the 4096-dimensional
real vector space 4096𝑥, and 𝐺(24𝑥) is the automorphism group Co0 of the Leech lattice Λ. 𝐺𝑥1 is a preimage of
𝐺𝑥0 with |𝐺𝑥1 : 𝐺𝑥0| = 2, and 𝐺𝑥0 operates faithfully on the tensor product 4096𝑥 ⊗Z Λ. Let (𝑥𝑔, 𝐿𝑔) ∈ 𝐺𝑥1 ⊂
𝐺(4096𝑥) × 𝐺(24𝑥). Component 𝑥𝑔 determines component 𝐿𝑔 of the pair up to sign. So it suffices to store the
image 𝑣𝑔 = 𝑣0 · 𝐿𝑔 of a fixed shortest vector 𝑣0 ∈ Λ/3Λ instead of the whole automorphism 𝐿𝑔 of Λ. We put
𝑣0 = (0, 0, 4,−4, 0, ..., 0) in the standard basis of the Leech lattice.

We can reconstruct 𝐿𝑔 from 𝑥𝑔 and 𝑣𝑔 as follows. 𝐺(4096𝑥) has an extraspecial subgroup 𝑄𝑥1 of structure 21+24. The
quotient of 𝑄𝑥1 by its center 𝑍(𝑄𝑥1) is isomorphic to Λ/2Λ. By definition of 𝐺𝑥1, the element 𝐿𝑔 operates on Λ/2Λ
in the same way as 𝑥𝑔 operates on 𝑄𝑥1/𝑍(𝑄𝑥1) by conjugation. So that operation of 𝐿𝑔 can be reconstructed from 𝑥𝑔 .
A short vector in Λ/2Λ has precisely two short preimages in Λ which are opposite. Thus the image of one short vector
is known exactly, and the images of all short vectors are known up to sign. Since 𝐿𝑔 preserves the scalar product,
the images of all short vectors in Λ can be computed. Function xsp2co1_elem_to_leech_op in file xsp2co1.c
constructs 𝐿𝑔 from 𝑥𝑔 and 𝑣𝑔 . The functions in file gen_leech.c support operations on Λ/2Λ and Λ/3Λ.
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Embedding a group related to 𝐺𝑥0 into a Clifford group

The representation 4096𝑥 of the subgroup 𝐺(4096𝑥) of 𝒞12 extends to the standard representation of the Clifford group
𝒞12. So we may use the theory in section Long-term stable storage of vectors of the representation for computing in
𝐺(4096𝑥). In that section the basis vectors of the standard representation of 𝒞12 are numbered from 0 to 212 − 1. We
will assign compatible numbers to the basis vectors of the representation 4096𝑥 .

Let𝒫 be the Parker loop as defined in section The Parker loop. The vector space 4096𝑥 has basis vectors 𝑑+1 , 𝑑
−
1 , 𝑑 ∈ 𝒫 ,

with relations (−𝑑)±1 = −𝑑±1 , (Ω𝑑)+1 = 𝑑+1 , (Ω𝑑)−1 = −𝑑−1 . In the same section the elements of 𝒫 are numbered from
0 to 213 − 1. For 0 ≤ 𝑑 < 211 we identify the basis vectors 𝑑+1 and 𝑑−1 of 4096𝑥 with the basis vectors with numbers
corresponding to 𝑑 and to 𝑑 + 211 of the representation of 𝒞12, respectively.

So we may represent an element 𝑥𝑔 of 𝐺(4096𝑥) as a quadratic state matrix in a structure of type qstate12_type,
as defined in file clifford12.h. Then we may use the functions in file qmatrix12.c for computing in 𝐺(4096𝑥).

The 𝐺𝑥0 representation

We actually represent an element of 𝐺𝑥0 in G_x0 representation. This is as an array elem of 26 integers of type
uint64_t. That array contains a pair (𝑥𝑔, 𝑣𝑔) as described above with 𝑣𝑔 stored in the first entry elem[0], and 𝑥𝑔

stored in the remaining 25 entries of array elem.

Vector 𝑣𝑔 ∈ Λ/3Λ is stored in elem[0] as a 48-bit integer in Leech lattice mod 3 encoding as described in the
documentation of module gen_leech.c.

We store the inverse 𝑥−1
𝑔 of 𝑥𝑔 in the upper 25 entries of the array elem. The rationale for storing the inverse is that

this simplifies the operation of 𝐺(4096)𝑥 on 𝑄𝑥1 by conjugation, using function qstate12_pauli_conjugate in file
qmatrix12.c. Note that 𝑥−1

𝑔 = 𝑥⊤
𝑔 , since 𝑥𝑔 is orthogonal.

In section Long-term stable storage of vectors of the representation an element 𝑐 of 𝒞12 is given as a real 212 × 212

matrix stored in a structure of type qstate12_type. In case 𝑐 ∈ 𝐺(4096𝑥) that matrix has rational entries, where the
denominators are powers of two. A structure of type qstate12_type representing a 𝑐 ∈ 𝐺(4096𝑥) contains a triple
(𝑒,𝐴,𝑄). There 𝑒 is a signed integral power of two, and (𝐴,𝑄) is a pair of bit matrices with up to 25 rows and up to
49 colums, where the first 24 columns belong to matrix 𝐴, and the remaining columns belong to matrix 𝑄.

Changing the sign of 𝑒 corresponds to negation of a matrix 𝑥−1
𝑔 ∈ 𝐺(4096𝑥) given by (𝑒,𝐴,𝑄) or to multiplication

by 𝑥−1. In the group 𝐺𝑥0, changing the sign of 𝑣𝑔 has the same effect as changing the sign of 𝑥𝑔; so 𝑒 can always be
made positive. The absolute value of 𝑒 is just there for scaling the operator norm of a matrix 𝑐 to 1, and can be omitted.

So we can represent one of the values ±𝑥−1
𝑔 as a pair (𝐴,𝑄) with an implied positive scalar factor 𝑒 as above, and

negate component 𝑣𝑔 of the pair (𝑥𝑔, 𝑣𝑔), if necessary.

Assuming that 𝑥−1
𝑔 is stored in a structure qs of type qstate_type, we copy all valid entries qs.data[i] to

elem[i+1]. This amounts to copying the components (𝐴,𝑄) of the triple (𝑒,𝐴,𝑄) from qs to elem. We always
reduce the quadratic state matrix in qs before copying it, as indicated in section Long-term stable storage of vectors of
the representation. We fill unused entries and bits in the array elem with zeros. Thus the representation of a 𝑔 ∈ 𝐺𝑥0

in memory is unique. qs can easily be reconstructed from elem, assuming that the scalar factor 𝑒 in the triple (𝑒,𝐴,𝑄)
is positive, and that trailing zero entries in the array elem are unused.

A word 𝑤 in the generators of the subgroup 𝐺𝑥0 of the monster group can be converted to G_x0 representation
by calling function xsp2co1_set_elem_word in file xsp2co1.c. Here the word 𝑤 must be given as an array ` of
unsigned 32-bit integers as described in section Header file mmgroup_generators.h.

194 Chapter 3. The C interface of the mmgroup project



mmgroup, Release mmgroup v1.0.0

The normal subgroup 𝑄𝑥0 of 𝐺𝑥0

The group 𝐺𝑥0 also has an extraspecial normal subgroup 𝑄𝑥0 of structure 21+24. There is a natural isomorphism
between the normal subgroup 𝑄𝑥1 of 𝐺(4096𝑥) and 𝑄𝑥0. Considering 𝐺(4096𝑥) and 𝐺(24𝑥) as matrix groups, this
isomorphism is given by:

𝑥 ∈ 𝑄𝑥1 ↦−→ 𝑥⊗ 1 ∈ 𝐺(4096𝑥) ⊗𝐺(24𝑥) ∼= 𝐺𝑥0 .

We identify 𝑄𝑥0 with 𝑄𝑥1. Both groups are generated by elements 𝑥𝑑, 𝑥𝛿 , as described above.

We also represent an element of 𝑄𝑥0 as a 25-bit integer in Leech lattice encoding as described in section Description
of the mmgroup.generators extension.

Changing the basis of the space 4096𝑥

We also use the vectors (𝑑′), 𝑑 ∈ 𝒫 as basis vectors of 4096𝑥 , where:

(𝑑)′ =
1√
2

(︀
𝑑+1 + 𝑑−1

)︀
, 𝑑±1 =

1√
2

((𝑑)′ ± (Ω𝑑)′) .

The reason for introducing this basis is that the operation of 𝐺𝑥0 on 𝑄𝑥0 (by conjugation) is easy when we use this
basis. Then we obviously have (−𝑑)′ = −(𝑑)′. We can transform the coordinates of a vector 𝑣 from the basis given
by 𝑑± to the basis given by (𝑑)′ by multiplying the coordinate vector with a matrix 𝐻 . Multiplication with matrix 𝐻
is equivalent to applying the Hadamard gate to Qubit 11 (i.e. to the bit with valence 211) of the coordinates of 𝑣 . Thus
𝐻 is an involution.

The numbering of the 4096 basis vectors (𝑑)′ corresponds to the numbering of the positive elemments of 𝒫 . We may
put (𝑑 ⊕ 212)′ = −(𝑑)′, where ⊕ means bitwise addition modulo 2; then that correspondence holds for all values
0 ≤ 𝑑 < 213. The exact defnition of the operator ⊕ on the Parker loop 𝒫 is given in section Implementing generators
of the Monster group.

In this basis the operation of the extraspecial group 𝑄𝑥0 is very simple:

• 𝑥𝑒𝑥𝜃(𝑒) maps (𝑑)′ to (𝑑⊕ 𝑒)′ for 𝑒 ∈ 𝒫 . Here 𝜃 is the cocycle, see section The Parker loop. In the language of
quantum computing this corresponds to a sequence of commuting not gates.

• 𝑥𝜖 maps (𝑑)′ to (−1)⟨𝑑,𝜖⟩(𝑑)′ for 𝜖 ∈ 𝒞*. Here 𝒞* is the Golay cocode. In the language of quantum computing
this corresponds to a sequence of commuting phase-𝜋 gates.

Since 𝐻 is in 𝒞12, it operates on 𝑄𝑥0 by conjugation. The following subtlety has to be considered in function
conv_pauli_vector_xspecial (in file xsp2cco1.c) implementing that operation. 𝐻 exchanges the anticcommut-
ing elements of 𝑄𝑥0 of with numbers 0x800 and 0x800000 in Leech lattice encoding. Thus it negates the element
with number 0x800800.

Converting an element in G_x0 representation to a word of generators

Perhaps the most inportant function in this module is function xsp2co1_elem_to_word. This function converts an
element of the subgroup 𝐺𝑥0 from G_x0 representation to a word 𝑤 of generators of the monster group. That word
𝑤 is unique and reduced in the sense explained in the description of that function.

There is also a companion function xsp2co1_reduce_word that first converts an arbitrary word in the generators of
the subgroup𝐺𝑥0 of the monster to G_x0 representation. Then it calls function xsp2co1_elem_to_word to compute
the reduced word equal to the input word.

We briefly explain the implementation of function xsp2co1_elem_to_word. Let 𝑔 ∈ 𝐺𝑥0 be given in G_x0 represen-
tation. The function first computes the image 𝑔−1𝑥Ω𝑔 of 𝑥Ω using function xsp2co1_xspecial_conjugate, with
Ω as in [Sey20]. Using that image and function gen_leech2_reduce_type4 in file gen_leech.c we can compute a
word 𝑤1 in the generators of 𝐺𝑥0 such that 𝑔1 = 𝑔 · 𝑤1 stabilizes 𝑥Ω up to sign.
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Then 𝑔1 is in the monomial subgroup 𝑁𝑥0 of 𝐺𝑥0 of structure 21+24.211.𝑀24. For any 𝑔1 ∈ 𝑁𝑥0 function
xsp2co1_elem_monomial_to_xsp computes a word in the generators of the monster that is equal to 𝑔1.

Given a monomial element 𝑔1 in G_x0 representation, function xsp2co1_elem_monomial_to_xsp computes a word
of generators equal to 𝑔1 as follows. Ignoring signs and identifying the basis vector 𝑑+1 of 4096𝑥 with the basis vector
𝑑−1 , Table 3 in [Sey20] states that 𝑥𝜋𝑦𝑒𝑥𝑓 maps 𝑑±1 to (𝑑𝜋𝑒𝑓)±1 . This corresponds to an affine mapping 𝑑 ↦→ 𝑑𝜋𝑒𝑓
from 𝒞/⟨Ω⟩ to itself, from which we can easily compute 𝑒, 𝑓 (modulo sign and Ω), and also 𝜋. Thus we can find a
word 𝑤2 in the generators 𝑥𝜋𝑦𝑒𝑥𝑓 , such that 𝑔2 = 𝑔1𝑤2 stabilizes all basis vectors of 4096𝑥 up to sign, and possibly
exchanging 𝑑+1 with 𝑑−1 . Then 𝑔2 can easily be converted into a word in the generators 𝑥−1, 𝑥Ω, 𝑥𝛿, 𝛿 ∈ 𝒞*.

We use function qstate12_monomial_matrix_row_op in file qmatrix12.c for obtaining the affine mapping 𝑑 ↦→
𝑑𝜋𝑒𝑓 from the G_x0 representation of 𝑔1. We use the functions in file mat24_functions.c for obtaining 𝜋 from
that affine mapping.

3.4.9 C functions in xsp2co1.c

File xsp2co1.c contains functions for computing in the subgroup 𝐺𝑥0 (of structure 21+24.Co1) of the
monster.

Functions

uint64_t xsp2co1_find_chain_short_3(uint64_t v3_1, uint64_t v3_2)
Find vector not orthogonal to vectors in Leech lattice mod 3.

Given two vectors 𝑣3,1 and 𝑣3,2 in the Leech lattice mod 3, the function returns a vector 𝑣3,3 such that
the scalar product ⟨𝑣3,3, 𝑣3,𝑖⟩ is not zero for both, 𝑖 = 1, 2. 𝑣3,3 has precisely two nonzero coordinates
and is hence short. Such a vector 𝑣3,3 exists if none of the vectors 𝑣3,1, 𝑣3,2 is zero. If no such vector
𝑣3,3 exists then the function returns 0.

All vectors 𝑣3,𝑖 are in given in Leech lattice mod 3 encoding.

int32_t xsp2co1_chain_short_3(qstate12_type *pqs, uint32_t n, uint64_t *psrc, uint64_t *pdest)
Apply transformation in 𝐺𝑥0 to vectors in Leech lattice mod 3.

Let 𝑥𝑔 ∈ 𝐺(4096𝑥) be given by the quadratic state matrix referred by pqs. Let psrc be an array
(𝑣0, . . . 𝑣𝑛−1) of 𝑛 short vectors in the Leech lattice mod 3, given in Leech lattice mod 3 encoding.
We try to compute 𝑤𝑖 = 𝑣𝑖𝑥𝑔 for 0 ≤ 𝑖 < 𝑛 and to store 𝑤𝑖 in pdest[i], also in Leech lattice
mod 3 encoding. Unfortunately, the short vector 𝑤𝑖 is defined to sign only. In other words, 𝑥𝑔 may
correspond to two different elements ±𝑔 in the automorphisem group Co0 of the Leech lattice.

To specify the correct 𝑔 ∈ Co0, we must store the correct value 𝑤0 = 𝑣0𝑥0 in pdest[0] and provide
short vectors 𝑣𝑖 such that the scalar product ⟨𝑣𝑖−1, 𝑣𝑖⟩ of adjacent vectors is not zero for 𝑖 > 0. The
the correct values 𝑣𝑖𝑥𝑖 are determined by ortohonality of 𝑔.

The function returns garbage if the input conditions for the 𝑥𝑔, 𝑣0, 𝑤0 are not satisfied. It returns a
negative value if two adjacent vectors 𝑣0 are orthognal or not short.

int32_t xsp2co1_elem_to_qs_i(uint64_t *elem, qstate12_type *pqs)
Get component 𝑥−1

𝑔 ∈ 𝐺(4096𝑥) from 𝑔 ∈ 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem, in G_x0 representation. This means that 𝑔 is given as a pair
(𝑥𝑔, 𝑣𝑔) ∈ 𝐺(4096𝑥)×Λ/3Λ . The function stores 𝑥−1

𝑔 in the structure qs of type qstate12_type
referred by pqs.

Component 𝑣𝑔 is equal to elem[0] (in Leech lattice mod 3 encoding).

Caution:
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This is a low-level function. After returning, the structure qs and the array elem share the same data
block.

Caution:

Internally, we store the inverse of component 𝑥𝑔 in the element 𝑔, and this function also stores that
inverse in the structure qs.

int32_t xsp2co1_elem_to_qs(uint64_t *elem, qstate12_type *pqs)
Get component 𝑥𝑔 ∈ 𝐺(4096𝑥) from 𝑔 ∈ 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem, in G_x0 representation. This means that 𝑔 is given as a pair
(𝑥𝑔, 𝑣𝑔) ∈ 𝐺(4096𝑥) × Λ/3Λ . The function stores 𝑥𝑔 in the structure qs of type qstate12_type
referred by pqs. 𝑥𝑔 represents a 4096 × 4096 matrix.

Caution:

The structure referred by pqs must provide sufficient memory for data, see function
qstate12_set_mem in file qstate12.c; here pqs->data should be at least 25.

int32_t xsp2co1_qs_to_elem_i(qstate12_type *pqs, uint64_t v_g, uint64_t *elem)
Construct 𝑔 ∈ 𝐺𝑥0 from pair (𝑥𝑔, 𝑣𝑔).

The function constructs a 𝑔 ∈ 𝐺𝑥0 as a pair (𝑥𝑔, 𝑣𝑔) ∈ 𝐺(4096𝑥) × Λ/3Λ and stores the result in
the array elem in G_x0 representation. The value 𝑥−1

𝑔 ∈ 𝐺(4096𝑥) must be given as a structure
of type qstate12_type referred by pqs. The value 𝑣𝑔 ∈ Λ/3Λ must be given by parameter v3 in
Leech lattice mod 3 encoding.

Caution:

As a low-level function, this function may construct a value 𝑔 which is not in 𝐺𝑥0. Function
xsp2co1_set_elem_word should be used for constructing an element of 𝐺𝑥0 instead.

Caution:

Internally, we store the inverse of component 𝑥𝑔 in the element 𝑔, and this function also requires that
inverse in the structure referred by pqs.

int32_t xsp2co1_reduce_elem(uint64_t *elem)
Reduce an 𝑔 ∈ 𝐺𝑥0 to a standard form.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem, in G_x0 representation. This means that 𝑔 is stored as a
pair (𝑥𝑔, 𝑣𝑔) ∈ 𝐺(4096𝑥) × Λ/3Λ . The function reduces the components 𝑥𝑔 , 𝑣𝑔 to their standard
form in place.

In functions that construct elements of 𝐺𝑥0 these components are reduced automatically.

void xsp2co1_neg_elem(uint64_t *elem)
Negate an 𝑔 ∈ 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem, in G_x0 representation. The function negates 𝑔 in place.

Negation is equivalent to multiplication with the generator 𝑥−1, and also to multiplication with the
generator 𝑦Ω.

void xsp2co1_copy_elem(uint64_t *elem1, uint64_t *elem2)
Copy a 𝑔 ∈ 𝐺𝑥0.

The function copies the element of 𝐺𝑥0 stored in the array elem1 (in G_x0 representation) to the
array elem2.

3.4. Description of the mmgroup.clifford12 extension 197



mmgroup, Release mmgroup v1.0.0

int32_t xsp2co1_elem_to_bitmatrix(uint64_t *elem, uint64_t *pA)
Map element of 𝐺𝑥0 to a bit matrix.

The function maps the element of 𝐺𝑥0 stored in

the array elem (in G_x0 representation) to a 24× 24 bit matrix 𝐴, which will be stored in the array
referred by pA. Bit matrix 𝐴 operates on a vector on the Leech lattice modulo 2 (in Leech lattice
encoding) by right multiplication.

So this function computes the homomorphism from the group 𝐺𝑥0 onto the group 𝐶𝑜1.

int32_t xsp2co1_mul_elem(uint64_t *elem1, uint64_t *elem2, uint64_t *elem3)
Multiply two elements of the group 𝐺𝑥0.

Let 𝑔1, 𝑔2 ∈ 𝐺𝑥0 be stored in the arrays elem1, elem2 in G_x0 representation. The function
computes 𝑔1 · 𝑔2 and stores the result in the array elem3 in G_x0 representation.

Any kind of overlapping beween the arrays elem1, elem2, and elem3 is allowed.

int32_t xsp2co1_inv_elem(uint64_t *elem1, uint64_t *elem2)
Invert an element of the group 𝐺𝑥0.

Let 𝑔1 ∈ 𝐺𝑥0 be stored in the array elem1, in G_x0 representation. The function computes 𝑔−1
1

and stores the result in the array elem2 in G_x0 representation.

Any kind of overlapping beween the arrays elem1 and elem2 is allowed.

int32_t xsp2co1_conj_elem(uint64_t *elem1, uint64_t *elem2, uint64_t *elem3)
Conjugate elements of the group 𝐺𝑥0.

Let 𝑔1, 𝑔2 ∈ 𝐺𝑥0 be stored in the arrays elem1, elem2 in G_x0 representation. The function
computes 𝑔−1

2 · 𝑔1 · 𝑔2 and stores the result in the array elem3 in G_x0 representation.

Any kind of overlapping beween the arrays elem1, elem2, and elem3 is allowed.

int32_t xsp2co1_xspecial_conjugate(uint64_t *elem, uint32_t n, uint64_t *ax, uint32_t sign)
Conjugation of elements of 𝑄𝑥0 with an element of 𝐺𝑥0.

Let 𝑥0, . . . , 𝑥𝑛−1 a list of 𝑛 elements of 𝑄𝑥0 stored in the the array ax in Leech lattice encoding.
Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation.

Then the function replaces the element 𝑥𝑖 by 𝑔−1𝑥𝑖𝑔 for 0 ≤ 𝑖 < 𝑛.

Parameter sign should usually be a nonzero value. In case sign = 0 the signs of the returned
vectors are not computed.

int32_t xsp2co1_xspecial_img_omega(uint64_t *elem)
Conjugation of Ω with an element of 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation, and let Ω be the standard frame
in the Leech latice. The function returns 𝑔−1Ω𝑔 in Leech lattice encoding, ignoring the sign of the
result.

int32_t xsp2co1_elem_check_fix_short(uint64_t *elem1, uint32_t v)
Check if an element of 𝐺𝑥0 fixes a short vector.

This function is deprecated!

Let 𝑣 be the short vector in the Leech lattice modulo 2 given by parameter v in Leech lattice encod-
ing. Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation.

If 𝑣 is short then it corresponds to a vector 𝑣′ in the 24-dimensional Leech lattice Λ up to sign. Note
that the operation of 𝐺𝑥0 on Λ is also defined up to sign only. So in the general case we cannot
distinguish whether 𝑔 fixes or negates 𝑣′.

198 Chapter 3. The C interface of the mmgroup project



mmgroup, Release mmgroup v1.0.0

However, 𝐺𝑥0 has a (faithful) representation on the tensor product Λ⊗ 4096𝑥 for a certain represen-
tation 4096𝑥, see [Con85] for details. Here the operation of 𝐺𝑥0 on 4096𝑥 is also defined up to sign
only.

If the character of 𝑔 on 4096𝑥 is nonzero then we can flip the signs in both representations, Λ and
4096𝑥, without changing the tensor product. Thus requiring the character of 𝑔 on 4096𝑥 to be positive
determines the sign of the operation of 𝑔 on Λ uniquely. In this case we return 0 if 𝑔 fixes the vector
𝑣′, and 1 if 𝑔 negates 𝑣′. Otherwise we return 6.

If the character of 𝑔 on 4096𝑥 is zero then there is no way to determine the sign of the operation of
𝑔 on Λ. In this case we return 2 if 𝑔 fixes the vector 𝑣′ (up to sign) and 6 otherwise.

In cases where 𝑔 and −𝑔 are in different classes in 𝐺𝑥0 we may sometimes obtain the class of 𝑔 by
using this function.

We return a negative value in case of any error. It is an error if 𝑣′ is not short, i.e. 𝑣 is not of type 2.

int32_t xsp2co1_xspecial_vector(uint64_t *elem)
Convert 𝑥 ∈ 𝑄𝑥0 from 𝐺𝑥0 rep to Leech.

Let 𝑥 ∈ 𝑄𝑥0 ⊂ 𝐺𝑥0 be stored in the array elem in G_x0 representation. The function returns 𝑥 as
an integer in Leech lattice encoding.

The function returns a negative number in case of error. E.g. in case 𝑥 /∈ 𝑄𝑥0 it returns
ERR_QSTATE12_NOTIN_XSP.

void xsp2co1_unit_elem(uint64_t *elem)
Store neutral element of 𝐺𝑥0.

The function stores the neutral element of 𝐺𝑥0 in the array elem in G_x0 representation.

uint32_t xsp2co1_is_unit_elem(uint64_t *elem)
Check if elem is neutral element of 𝐺𝑥0.

The function returns 1 if elem is the neutral element of 𝐺𝑥0 and 0 otherwise.

int32_t xsp2co1_elem_xspecial(uint64_t *elem, uint32_t x)
Convert 𝑥 ∈ 𝑄𝑥0 from Leech to 𝐺𝑥0 rep

Let 𝑥 ∈ 𝑄𝑥0 ⊂ 𝐺𝑥0 be stored in parameter x in Leech lattice encoding. The function converts 𝑥 to
G_x0 representation and stores the result in the array elem .

int32_t xsp2co1_mul_elem_word(uint64_t *elem, uint32_t *a, uint32_t n)
Right multiply an element of 𝐺𝑥0 with a word of generators.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. We replace 𝑔 by 𝑔 ·𝑤, where 𝑤 is
a word in the generators of 𝐺𝑥0 of length 𝑛. 𝑤 is stored in the array a, and each entry of a encodes
a generator of 𝐺𝑥0 as described in file mmgroup_generators.h.

The function fails and returns ERR_QSTATE12_GX0_TAG if not all atoms of the word 𝑤 are in
𝐺𝑥0.

int32_t xsp2co1_set_elem_word(uint64_t *elem, uint32_t *a, uint32_t n)
Convert word of generators of 𝐺𝑥0 to G_x0 representation.

Let 𝑤 be a word in the generators of 𝐺𝑥0 of length 𝑛. 𝑤 is stored in the array a, and each entry of a
encodes a generator of 𝐺𝑥0 as described in file mmgroup_generators.h. We convert the word 𝑤
to an element of 𝐺𝑥0 in G_x0 representation and store the result in the array elem.

The function fails and returns ERR_QSTATE12_GX0_TAG if not all atoms of the word 𝑤 are in
𝐺𝑥0.
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int32_t xsp2co1_mul_elem_atom(uint64_t *elem, uint32_t v)
Right multiply an element of 𝐺𝑥0 with a generator.

Equivalent to xsp2co1_mul_elem_word(elem, &v, 1)

int32_t xsp2co1_set_elem_atom(uint64_t *elem, uint32_t v)
Convert a generator of 𝐺𝑥0 to G_x0 representation.

Equivalent to xsp2co1_set_elem_word(elem, &v, 1)

int32_t xsp2co1_set_elem_word_scan(uint64_t *elem, uint32_t *a, uint32_t n, uint32_t mul)
Convert word of generators of 𝐺𝑥0 to G_x0 representation.

Parameters and operation are as in function xsp2co1_set_elem_word. But in contrast to function
xsp2co1_set_elem_word, this function succeeds also if just a prefix of the word a is in the subgroup
𝐺𝑥0.

Let k be the greatest number such that all prefixes of a of length at most k are in the group 𝐺𝑥0. Let
𝑎𝑘 be the element of 𝐺𝑥0 corresponding to the prefix of a of length k.

If parameter mul is zero then we convert the word 𝑎𝑘 to an element of 𝐺𝑥0 in G_x0 representation
and store the result in the array elem. Otherwise we multiply the element elem with the word 𝑎𝑘
and store the array in elem.

3.4.10 C functions in xsp2co1_word.c

File xsp2co1_word.c contains additional functions for computing in the subgroup 𝐺𝑥0 (of structure
21+24.Co1) of the monster. This file can be considered as a supplement to file xsp2co1.c.

Functions

uint64_t xsp2co1_to_vect_mod3(uint64_t x)
Auxiliary function for function xsp2co1_add_short_3_leech

The function converts a vector in Λ/3Λ from Leech lattice mod 3 encoding to the encoding to the
encoding of a vector in (Z/3Z)24 used in the mmgroup.mm_op extension.

uint64_t xsp2co1_from_vect_mod3(uint64_t x)
Inverse of function xsp2co1_to_vect_mod3

The function converts a vector in Λ/3Λ from the encoding of a vector in (Z/3Z)24 used in the
mmgroup.mm_op extension to the Leech lattice mod 3 encoding.

int32_t xsp2co1_elem_to_leech_op(uint64_t *elem, int8_t *pdest)
Get Leech lattice matrix from 𝑔 ∈ 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem, in G_x0 representation. 𝐺𝑥0 operates faithfully on the
space 4096𝑥 ⊗Z Λ. This function constructs a 24× 24 integer matrix 𝐿𝑔 such that 1

8𝐿𝑔 corresponds
to the operation of 𝑔 on Λ. It stores entry 𝐿𝑔[𝑖, 𝑗] in dest[24*i+j]. Matrix 𝐿𝑔 is unique up to sign.

Function xsp2co1_elem_to_qs(elem,...) computes a (representation of) an orthogonal 4096×
4096 matrix 𝑥𝑔 such that right multiplication with the Kronecker product 1

8𝑥𝑔 ⊗ 𝐿𝑔 is equal to the
action of 𝑔 on 4096𝑥 ⊗ Λ.
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int32_t xsp2co1_short_3_to_leech(uint64_t x, int8_t *pdest)
Compute integral short Leech lattice vector from vector mod 3.

Given a short Leech lattice vector x (modulo 3) in Leech lattice mod 3 encoding, the function
computes the real coordinates of vector x in the array referred by pdest. pdest must have length
24. As usual, the norm (i.e. the squared sum of the coordinates) of the computed short vector is
normalized to 32.

The function returns 0 if x encodes a short Leech lattice vector mod 3 and a negative value otherwise.

int32_t xsp2co1_short_2_to_leech(uint64_t x, int8_t *pdest)
Compute integral short Leech lattice vector from vector mod 2.

Given a short Leech lattice vector x (modulo 2) in Leech lattice encoding, the function computes the
real coordinates of vector x in the array referred by pdest. pdest must have length 24. As usual,
the norm (i.e. the squared sum of the coordinates) of the computed short vector is normalized to 32.
Note that the result is defined up to sign only. Here the function chooses an arbitrary sign.

The function returns 0 if x encodes a short Leech lattice vector mod 2 and a negative value otherwise.

int32_t xsp2co1_elem_monomial_to_xsp(uint64_t *elem, uint32_t *a)
Map monomial element of 𝐺𝑥0 to element of 𝑄𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 stored in the array elem. The matrix corresponding to 𝑔 in the representation 4096𝑥
must be monomial. The function computes a word𝑤 of in the generators of 𝐺𝑥0 such that 𝑔𝑤 ∈ 𝑄𝑥0.
The word 𝑤 has length at most 2 and is stored in the array a. Each entry of a encodes a generator of
𝐺𝑥0 as described in file mmgroup_generators.h. The function returns the length of that word.

The atoms in the word have tags p, y in that order. Each word is stored as the inverse of a generator.

int32_t xsp2co1_elem_to_word(uint64_t *elem, uint32_t *a)
Convert element of 𝐺𝑥0 to a word in its generators.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem. The function converts 𝑔 to a reduced word in the generators
of 𝑔 and stores that word in the array a. Then each entry of a encodes a generator of 𝐺𝑥0 as described
in file mmgroup_generators.h. The function returns the length of that word.

The reduced word stored in the array a may have up to 10 entries. The tags of the entries in that
word are xdyplplplp in that order. See documentation of class mmgroup.MMGroup for the meaning
of these tags. Each entry of a word may encode the neutral element as a generator; then that entry is
dropped. We assert that the number of entries with tag l is minimal.

int32_t xsp2co1_reduce_word(uint32_t *a, uint32_t n, uint32_t *a1)
Reduce a word of generators of 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array a as a word 𝑤 of length 𝑛. The function computes the reduced
word 𝑤1 equal to 𝑤 in the array a1 and returns the length of the reduced word. Legal tags for the
word 𝑤 are d, x, y, p, and l. See documentation of class mmgroup.MMGroup for the meaning of
these tags.

It uses function xsp2co1_elem_to_word for computing 𝑤1. The word 𝑤1 stored in the array a1
may have up to 10 entries. Arrays a and a1 may overlap.

int32_t xsp2co1_elem_subtype(uint64_t *elem)
Return the subtype of an element of 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem. The function returns the subtype of 𝑔. If 𝑔 maps the
standard frame Ω of the Leech lattice modulo 2 to a frame of subtype 𝑡 then 𝑔 has subtype 𝑡.

The subtype is returned as an integer as in function gen_leech2_subtype in module gen_leech.c.
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Since the subtype is determined by the size of the denominators of the representation 4096𝑥, it can
be computed very fast.

The function returns -1 in case of an error.

uint32_t xsp2co1_check_word_g_x0(uint32_t *w, uint32_t n)
Check if a word of generators of the monster is in 𝐺𝑥0.

We check if the word w of length n of generators of the monster group is in the subgroup 𝐺𝑥0. The
function returns the following status information:

0: w is in 𝐺𝑥0

1: w is not in 𝐺𝑥0

2: Nothing is known about w

Words of generators of the monster are implemented as described in file mmgroup_generators.h.

int32_t xsp2co1_isotropic_type4(uint32_t v, uint64_t *pB, int32_t n)
Compute maximal isotropic space corresponding to a type-4 vector.

Any type-4 vector in the Leech lattice mod 2 corrsponds to a unique maximal isotropic space (of
dimension 12) in the Leech lattice mod 2. E.g. the standard type-4 vector Ω corresponds to the space
spanned by Ω and (the images in the Leech lattice mod 2 of) all even Golay cocode words.

Given a type-4 vector 𝑣 in Leech lattice encoding, we usually want to find the intersection of the
isotropic space 𝑣(⊥) corresponding to 𝑣 with a given linear subspace 𝑋 of the Leech lattice mod 2.
Let 𝑋 be the space spanned by the vectors 𝑏0, ..., 𝑏𝑛−1 in the array B referred by pB of size n.

The function modifies the basis in the array B, so that it will be the a basis of the space 𝑣(⊥) ∪𝑋 of
dimension m in reduced echelon form. The function returns m in case of success and a negative value
in case of failure. The function fails if 𝑣 is not of type 4.

In case 𝑛 < 0 we assume that B is a basis of the whole Leech lattice mod 2 and return a basis of 𝑣(⊥)

in B. Array B must have size at least max(𝑛, 12).

int32_t xsp2co1_elem_row_mod3(uint64_t *elem, uint32_t column, uint64_t *v)
A low-level function to be used for testing.

A projection matrix Π is a symmetric matrix with one eigenvalue 1 and the other eigenvalues equal
to zero operating on an Euclidean vector space. Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0
representation. This function left multiplies 𝑔 by a certain projection matrix Π. The result 𝑦 = Π ·𝑔
is an element of the vector space 4096𝑥 ⊗ 24𝑥. The function reduces the coordinates of 𝑦 modulo
3 and stores the result in the array v in a format compatible the format used in the mmgroup.mm_op
extension.

Right multiplcation of 𝑔 by 𝐺𝑥0 commutes with left multiplication of 𝑔 by Π, so that we can test
the right multiplication by 𝐺𝑥0 implemented in this module against the corresponding multiplication
implemented in the mmgroup.mm_op extension. This leads to the important interoperability test in
the python function mmgroup.tests.test_clifford.test_xs1_vector.test_vector.

We specify the projection matrix Π as a tensor product Π4096 ⊗ Π24. Here Π24 projects onto the
fixed short Leech lattice vector (0, 0, 1,−1, 0, . . . , 0). Π4096 is the projection onto the coordinate
with number column of the space 4096𝑥.

Remark:

The result is an array with 4096 entries corresponding to the entries with tags Z and Y of a vector in
the represention 𝜌3, as described in section The Representation of the Monster Group of the API
reference.

Warning:
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This function works only if the data type uint_mmv_t used in the mmgroup.mm_op extension is
equal to the data type uint64_t.

int32_t xsp2co1_elem_read_mod3(uint64_t *v, uint64_t *elem, uint32_t row, uint32_t column)
Read entry of a transfromed vector of the monster rep modulo 3.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem. Let 𝑣 be the vector of the representation 4096𝑥 ⊗ 24𝑥
modulo 3 stored in the array v in a format compatible to the format used in the mmgroup.mm_op
extension. Then the function returns the entry of the vector 𝑣′ = 𝑣 · 𝑔−1 in row 0 <= row < 4096
and column 0 <= column < 24 of 𝑣′.

This function is considerably faster than the computation of 𝑣′ = 𝑣 · 𝑔−1 using the functions in the
mmgroup.mm_op extension.

In case column = 24 the function returns the value (v'[row,2] - v'[row,3]) mod 3. In case
of success the return value is a nonnegative integer less than 3. A negative return value indicates
failure.

3.4.11 C functions in xsp2co1_elem.c

File xsp2co1_elem.c contains functions for analyzing elements of the subgroup 𝐺𝑥0 (of structure
21+24.Co1) of the monster.

Functions

int32_t xsp2co1_elem_to_N0(uint64_t *elem, uint32_t *g)
Convert element of 𝐺𝑥0 to element of 𝑁0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem1 in G_x0 representation. The function converts 𝑔 to an
element 𝑁0, as described in the documentation of file mm_group_n.c. The result is stored in the
array of length 5 referred by parameter g.

The function returns 0 in case of success and ERR_QSTATE12_GX0_BAD_ELEM if 𝑔 is not and 𝑁0.

int32_t xsp2co1_elem_from_N0(uint64_t *elem, uint32_t *g)
Convert element of 𝑁0 to element of 𝐺𝑥0.

Let 𝑔 ∈ 𝑁0 be stored in the array of length 5 referred by parameter g as described in the documenta-
tion of file mm_group_n.c. We convert 𝑔 to an element in G_x0 representation and store the result
in the array elem.

The function returns 0 in case of success and ERR_QSTATE12_GX0_BAD_ELEM if 𝑔 is not in 𝐺𝑥0.

int32_t xsp2co1_conjugate_elem(uint64_t *elem, uint32_t *a, uint32_t n)
Conjugate element of 𝐺𝑥0 by an element of monster group.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. Let 𝑤 be a word in the generators
of the monster group of length n. 𝑤 is stored in the array a, and each entry of a encodes a generator
of the monster group described in file mmgroup_generators.h.

The function tries to replace 𝑔 by ℎ = 𝑤−1𝑔𝑤. The function succeeds if for any prefix 𝑤𝑖 of the
word 𝑤 we have 𝑤−1

𝑖 𝑔𝑤𝑖 ∈ 𝐺𝑥0.

int32_t xsp2co1_power_elem(uint64_t *elem1, int64_t e, uint64_t *elem2)
Exponentiation of an element of the group 𝐺𝑥0.
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Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem1 in G_x0 representation. The function computes the power
𝑔𝑒 and stores the result in the array elem2 in G_x0 representation. Here −263 < 𝑒 < 263 must
hold.

A negative return value indicates an error.

Any kind of overlapping beween the arrays elem1 and elem2 is allowed.

int32_t xsp2co1_power_word(uint32_t *a1, uint32_t n, int64_t e, uint32_t *a2)
Exponentiation of an word of the group 𝐺𝑥0.

Let 𝑤 be a word in the generators of 𝐺𝑥0 of length n. 𝑤 is stored in the array a1, and each entry of
a1 encodes a generator of 𝐺𝑥0 as described in file mmgroup_generators.h.

The function stores 𝑤𝑒 in the array a2 in the same format as the word 𝑤 and returns the length of the
computed word, which is at most 10.

A negative return value indicates an error.

Any kind of overlapping beween the arrays a1 and a2 is allowed.

int32_t xsp2co1_odd_order_bitmatrix(uint64_t *bm)
Compute odd part of the order of an element of Co1.

Let an element 𝑔 of Co1 be given as a 24 times 24 bit matrix in the array bm acting on the Leech
lattice modulo 2 by right multiplication. Here vectors in the Leech lattice modulo 2 are given in
Leech lattice encoding.

Then the function returns the odd part of the order of 𝑔. It returns a negative value in case of failure.

int32_t xsp2co1_half_order_elem(uint64_t *elem1, uint64_t *elem2)
Compute (halved) order of an element of the group 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem1 in G_x0 representation. The function returns the order
of the element 𝑔.

If the order 𝑜 of 𝑔 is even then the function stores 𝑔𝑜/2 in the array elem2 in G_x0 representation.
Otherwise it stores the neutral element in elem2.

A negative return value indicates an error.

Any kind of overlapping beween the arrays elem1 and elem2 is allowed.

int32_t xsp2co1_order_elem(uint64_t *elem)
Compute order of an element of the group 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem1 in G_x0 representation. The function returns the order
of the element 𝑔.

A negative return value indicates an error.

int32_t xsp2co1_half_order_word(uint32_t *a1, uint32_t n, uint32_t *a2)
Compute (halved) order of a word of the group 𝐺𝑥0.

Let 𝑤 be a word in the generators of 𝐺𝑥0 of length n. 𝑤 is stored in the array a1, and each entry of
a1 encodes a generator of 𝐺𝑥0 as described in file mmgroup_generators.h.

If the order 𝑜 of the word 𝑤 is even then the function stores 𝑤𝑜/2 in the array a2 in the same format
as the word 𝑤. Otherwise it stores the empty word in a2. The length k of the word in a2 is at most
10.

The function returns the value 0x100 *o + k.

A negative return value indicates an error.
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int32_t xsp2co1_order_word(uint32_t *a, uint32_t n)
Compute order of a word of the group 𝐺𝑥0.

Let 𝑤 be a word in the generators of 𝐺𝑥0 of length n. 𝑤 is stored in the array a, and each entry of a
encodes a generator of 𝐺𝑥0 as described in file mmgroup_generators.h.

The function returns the order of 𝑤 .

A negative return value indicates an error.

uint32_t xsp2co1_leech2_count_type2(uint64_t *a, uint32_t n)
Count type-2 vectors in an affine subspace of the Leech lattice mod 2.

This function returns the number of type-2 vectors in an affine subspace 𝑉 of the Leech lattice mod
2. Subspace 𝑉 is defined by an array 𝑎 of length 𝑛 of bit vectors. 𝑉 is given by:

𝑉 = {𝑎0 +
∑︀𝑛−1

𝑖=1 𝜆𝑖𝑎𝑖 | 𝜆𝑖 = 0, 1}.

Caution:

The function may change the description of the affine space 𝑉 in the array 𝑎 to a different description
of the same space 𝑉 .

Remark:

This function is a much faster version of the function gen_leech2_count_type2 in file
gen_leech.c. The implementation of the latter function is much simpler; so we keep it for test
purposes.

int32_t xsp2co1_trace_98280(uint64_t *elem, int32_t (*f_fast)(uint64_t*))
Compute character of 𝜌98280 of element of 𝐺𝑥0.

This function is for internal use only.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. The function returns the character
of the representation 𝜌98280.

This function may takes a long time is it does not use precomputed tables. However, precomputing
such tables may requires this function (being alled without any precomputed tables).

In parameter f_fast the user may specify a function with signature int32_t
(*f_fast)(uint64_t *elem) that returns the character 𝜌98280 in some cases. That func-
tion should use precomputed tables for computing that character and return an error code if it
cannot compute a character. In this case we use the standard method form computing the requested
character. If f_fast is NULL then we always use the standard method.

Any value less than -0x1000000 returned by function f_fast or by this function is to be interpreted
as an error.

int32_t xsp2co1_traces_small(uint64_t *elem, int32_t *ptrace)
Workhorse for function xsp2co1_traces_all

This function is for internal use only.

Parameters and operation are are as in function xsp2co1_traces_all. But this function does not
compute the character of the representation 𝜌98280 in ptrace[3].

int32_t xsp2co1_traces_all(uint64_t *elem, int32_t *ptrace)
Compute relevant characters of element of 𝐺𝑥0.

This function is for internal purposes only.
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Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. The function computes the
characters of the representations 𝜌24, 𝜌576, 𝜌4096, 𝜌98280 and stores the result in ptrace[0],...,
ptrace[3] in that order.

This function returns 0 in case of success and a nonzero value otherwise.

There is a considerably faster function xsp2co1_traces_all in module xsp2co1_traces.c per-
forming exactly the same operation depending in the same input parameters. More details are given
in the documentation of that function.

In contrast to function xsp2co1_traces_fast, this function does not use any precomputed tables.
Actually, this function is used for precomputing those tables.

int32_t xsp2co1_rand_word_N_0(uint32_t *w, uint32_t in_N_x0, uint32_t even, uint64_t *seed)
Generate a random element of the group 𝑁0.

The function computes a uniform distributed random element 𝑔 of the subgroup 𝑁0 of structure
22+11+22.(𝑀24 × Sym3) of the monster. The group 𝑁0 is generated by the generators with tags x,
y, d, p, t.

Thw function stores a word representing the element 𝑔 in the buffer w and returns the length of that
word.

The length of the word in the buffer w is at most 5.

If parameter in_N_x0 is nonzero then we compute a random element of the subgroup 𝑁𝑥0 of index
3 in 𝑁0 generated by the generators with tags x, y, d, p.

If parameter even is nonzero then we compute a random element of the subgroup 𝑁even of index
2 in 𝑁0 generated by the generators with tags x, y, d, p, t, where all generators with tag d
correspond to even Golay cocode words.

If both, in_N_x0 and even, are nonzero then we compute a random element of 𝑁𝑥𝑦𝑧0 = 𝑁even ∩
𝑁𝑥0.

The function uses the internal random generator in file gen_random.c. Parameter seed must be a
seed for a random generator as described in file gen_random.c.

int32_t xsp2co1_rand_word_G_x0(uint32_t *w, uint64_t *seed)
Generate a random element of the group 𝐺𝑥0.

The function computes a uniform distributed random element 𝑔 of the group 𝐺𝑥0. It stores a word
representing the element 𝑔 in the buffer w and returns the length of that word.

The length of the word in the buffer w is at most 10.

The function uses the internal random generator in file gen_random.c. Parameter seed must be a
seed for a random generator as described in file gen_random.c.

A negative return value indicates an error.
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3.4.12 C functions in leech3matrix.c

File leech3matrix.c contains functions for computing with matrices corresponding to the part with tag
‘A’ of a vector of the representation of the monster modulo 3. Note that this part has a natural interpretation
as a symmetric matrix on the Leech lattice.

For these computations we deal with i0 times i1 matrices m for i0 <= 24, i1 <= 48, Such a matrix is
stored in an array a of integers of type uint64_t of length 24 * 3. Here the entry m[i,j] is stored in a[3*i
+ j/16], bits 4 * (j % 16),..., 4 * (j % 16) + 3. We call a the matrix mod 3 encoding of the
matrix m.

Unless otherwise stated, we assume that the lower two bits of such a bit field have arbitrary values, and
that the higher two bits of that bit field are zero.

There are functions for loading such a matrix m from a vector in a represenation of the monster, for ele-
chonization of m, for computing the kernel of m etc.

Functions

void leech3matrix_echelon(uint64_t *a)
Echelonize a matrix of integers mod 3.

Here a is a matrix in matrix mod 3 encoding as documented in the header of this file. That matrix
is transformed to row echelon form. We echelonize columns 0,. . . ,23 of matrix a in that order. The
matrix is not converted to reduced echelon form.

void leech3matrix_compress(uint64_t *a, uint64_t *v)
compress a matrix in matrix mod 3 encoding

Let a be an 24 times 48 matrix in matrix mod 3 encoding. We consider a as a pair of two matrices
Ah, Al, withAl in columns 0,. . . ,23 and Ah in columns 24,. . . ,47 of a.

We store matrix Al in the entriesv[0], ..., v[23], and matrix Ah in the entriesv[24], ...,
v[47]. Here column j of a row of Ah or Al is reduced modulo 3 (so it has value 0, 1, or 2) and that
value is stored in bits 2*j+1 and 2*j of the corresponding entry of v.

So each of the matrices Al and Ah will be encoded as the part with tag ‘A’ of a vector in the repre-
sentation 𝜌3 of the monster modulo 3.

The overlapping v == a is legal; any other kind of overlappig between v and a is illegal.

void leech3matrix_sub_diag(uint64_t *a, uint64_t diag, uint32_t offset)
Subtract diagonal matrix from matrix in matrix mod 3 encoding.

Let a be an 24 times 48 matrix in matrix mod 3 encoding.

We subtract a diagonal matrix from a. More precisely, we subtract the integer diag from all entries
a[i, i+offset], for i = 0,...,23.

uint64_t leech3matrix_rank(uint64_t *a, uint32_t d)
Rank and kernel of a 24 times 24 matrix modulo 3.

Let r be the rank of the 24 times 24 matrix b = a - d * 1. Here the entries of that matrix are
taken modulo 3, d is an integer, and 1 is the unit matrix. Input a is a 24 times 24 matrix in matrix
mod 3 encoding as documented in the header of this file.

Let r be the rank of matrix b with entries taken modulo 3. If matrix b has rank 23 then its kernel
is one dimensional. In that case the kernel contains two nonzero vectors +-w, and we define w to be
one of these vectors. Otherwise we let w be the zero vector.
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The function returns the value (r << 48) + w, with w the vector defined above given in Leech
lattice mod 3 encoding as described in The C interface of the mmgroup project.

Input a is destroyed.

uint64_t leech3matrix_vmul(uint64_t v, uint64_t *a)
Multiply vector with a 24 times 24 matrix modulo 3.

Input a is a 24 times 24 matrix encoded as the part with tag ‘A’ of a vector in the representation 𝜌3
of the monster modulo 3. Input v is a vector of 24 integers modulo 3 encoded in Leech lattice mod
3 encoding. The function computes the product 𝑣 · 𝑎 of the vector 𝑣 and the matrix 𝑎 and returns the
result in Leech lattice mod 3 encoding.

Vector 𝑣 has 24 entries. If the upper 𝑘 entries of 𝑣 are zero then we access the first 24 − 𝑘 rows of
matrix 𝑎 only. So the buffer referred by a must have length (24 - k) in this case.

int32_t leech3matrix_prep_type4(uint64_t *a, uint32_t n, uint64_t *w, uint64_t *seed)
Prepare subspace of Leech lattice mod 3 for finding type-4 vectors.

Let 𝑎 be the subspace of the Leech lattice mod 3 spanned by the vectors in the array a of length n.
Here each entry of the array a is encoded in the same way as a row of the part with tag ‘A’ of a vector
in the representation 𝜌3 of the Monster modulo 3. Usually, such a subspace of the Leech lattice mod
3 is computed by applying function leech3matrix_echelon to a (suitably modified) part with tag
‘A’ of a vector in the representation 𝜌3.

The function computes an array of 2*n random vectors taken from the space 𝑎 and stores these 2*n
vectors in the array w in Leech lattice mod 3 encoding. Half of the vectors in array w are obtained by
left multiplying matrix 𝑎 with a random upper triangular matrix; and the other half of these vectors
is obtained by left multiplication with a random lower triangular matrix. Parameter seed points to a
random generator for generating random matrices; see module gen_random.c for details.

Thus the vectors in array w span the space 𝑎; and we may obtain random vectors in 𝑎 by performing
random additions and subtractions of the entries of w. E.g. function leech3matrix_prep_type4
generates random type-4 in the space space 𝑎 using that method.

The function returns the size 2*n of the array w in case of success and a negative value in case of
failure. Any overlapping between the arrays a and w is allowed. On input, 1 <= n <= 12must hold.

int32_t leech3matrix_rand_type4(uint64_t *w, uint32_t n, uint32_t trials, uint64_t *seed)
Random type-4 vector in subspace of Leech lattice mod 3.

The function tries to find a random type-4 vector in a subspace 𝑎 of the Leech lattice mod 3 spanned
by the vectors in the array a of length n. Here the entries of the array w should be given in Leech
lattice mod 3 encoding, as e.g. returned by function leech3matrix_prep_type4. That function
returns more vectors generating the space 𝑎 than necessary in order to facilitate the generation of
random vectors in 𝑎.

The function performs up to trials random additions or subtractions in the space 𝑎, until it finds
a type-4 vector. If such a type-4 vector has been found then that vector is returned as a vector v in
the Leech lattice mod 2 in Leech lattice encoding. Parameter seed points to a random generator for
generating the required random data; see module gen_random.c for details.

If a type-4 vector v has been found then the function returns (t << 4) + v. Here 0 <= v <
0x1000000 is the vector found in the Leech lattice mod 2 in Leech lattice encoding; and t is the
number of trials required to find v. In case t > 127 we put t = 127.

If no type-4 vector has been found after trials trials then the function returns 0.

The function returns a negative value in case of failure; e.g. if the random generator has failed.
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int32_t leech2matrix_add_eqn(uint64_t *m, uint32_t nrows, uint32_t ncols, uint64_t a)
Add an equation to a system of linear bit equations.

The idea behind this function is that an external process generates rows of a bit matrix with ncols
columns, with 0 < ncols <= 32. This function checks such a row a and accepts it, if it linearly
independent of all previously accepted rows. Thus at most ncols rows can be accepted. The nrows
already accepted rows are stored in the array m. The function returns 1 if row a is accepted and
0 otherwise. A negative return value indicates an error. The size of the array m should be at least
ncols.

Let A be the ncols times ncols matrix of all accepted rows a[i], 0 <= i < ncols; and let I be
the ncols time ncols unit matrix. We left multiply A with a matrix T such that T * A = I. Thus
T = A**(-1). Technically, we perform row operations on the matrix A[:nrows] containing the
first nrows lines already accepted, such that T * A[:rnows] is in reduced echelon form. We also
perform the same row operations on the unit matrix to obtain T. We store T[:rnows] in columns
0,...,ncols-1 of matrix M and T*A[:rnows] in columns ncols,...,2*ncols-1 of matrix M.

One may use function leech2matrix_solve_eqn for solving a system of linear equations obtained
in that way.

uint32_t leech2matrix_solve_eqn(uint32_t *m, uint32_t ncols, uint64_t v)
Solve a system of linear bit equations.

Let A be a nonsingular ncols times ncols bit matrix stored in the array m in the special form as
described in function leech2matrix_add_eqn.

The function returns the solution w of the equation w * A = v.

Caution:

Here m is of of type uint32_t *, but the corresponding parameter in function
leech2matrix_add_eqn is of type uint64_t *. This simplifies the use of this function in
most pplications.

uint32_t leech2_matrix_basis(uint32_t *v2, uint32_t n, uint64_t *basis, uint32_t d)
Subspace generated by vectors of Leech lattice modulo 2.

Compute a basis of the subspace of the Leech lattice modulo 2 generated by the vectors v2[0],...
,v2[n-1].

The function returns the dimension k of that subspace and computes a basis of that subspace in
basis[i], 0 <= i < k.

Here d must be an upper bound for the dimension k. If k is unknown, one should put d = 24.

Bits 23,. . . ,0 of the output matrix are echelonized in a special way. Here the columns are processed
in the order:

11, 22, 21, . . . , 13, 12, 10, 9, . . . , 1, 0, 23.

One of the advantages of this echelonization is that the vector Ω (encoded as 0x800000) will occur
in the basis if it is in the subspace, and that there are many even vectors (i.e. vectors orthogonal to
Ω) in the basis.

int32_t leech2_matrix_orthogonal(uint64_t *a, uint64_t *b, uint32_t k)
Compute standard orthogonal complement in Leech lattice mod 2.

Let 𝐴 = 𝑎0 . . . , 𝑎𝑘−1 be a matrix of 𝑘 vectors in the Leech lattice mod 2 stored in the array a. The
function returns a basis 𝐵 = 𝑏0 . . . , 𝑏23 of the Leech lattice mod 2 in the array b, and it returns a
number 𝑚 such that the vectors 𝑏𝑚 . . . , 𝑏23 are a basis of the orthogonal complement of the space
generated by the row vectors of 𝐴.
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If the vectors (𝑎0 . . . , 𝑎𝑘−1) are linear independent then the function returns 𝑚 = 𝑘, and vector
𝑏𝑖, 𝑖 < 𝑘 is orthogonal to all vectors 𝑎𝑗 with 𝑗 ̸= 𝑖.

The basis 𝐵 = 𝑏0 . . . , 𝑏23 is stored in the array b.

We require 𝑘 ≤ 24. The function returns 𝑚 ≥ 0 in case of success a negative value in case of failure.

uint32_t leech2_matrix_radical(uint32_t *v2, uint32_t n, uint64_t *basis, uint32_t d)
Radical of subspace generated by vectors of Leech lattice mod 2.

Compute the radical of the subspace of the Leech lattice modulo 2 generated by the vectors v2[0],
...,v2[n-1]. Here the radical is the intersection of the space generated by v2[0],...,v2[n-1]
with the orthogonal complement of that space.

Input parameters v2, n, and d are as in function leech2_matrix_basis. A basis of the radical of
the space is computed in basis. The basis is echelonized as in function leech2_matrix_basis.
The function returns the dimension k of radical spanned by that basis.

uint32_t leech2_matrix_expand(uint64_t *basis, uint32_t dim, uint32_t *v2)
List vectors in a subspace of the Leech lattice modulo 2.

The function computes all 2**dim vectors of the subspace V of the Leech lattice modulo 2 given by
the basis

basis[0], ..., basis[dim - 1] .

These vectors are written into the array v2. The function

void leech3_vect_mod3_to_signs(uint64_t *v, uint64_t mult, uint32_t n, uint64_t *signs)
Map vector in rep of the Monster mod 3 to array of signs.

Let v be a part of a vector of the 198884-dimensional representation of the monster group modulo 3,
which is organized as a n times 24 matrix of integers mod 3. Here v is the relevant part of a vector
encoded as in the mmgroup.mm_op extension; see The C interface of the mmgroup project, section
Description of the mmgroup.mm extension for details.

Let mult be a vector of 24 integers mod 3 encoded in the Leech lattice mod 3 encoding.

The function computes the scalar product of each row of v with mult and stores the n signs of these
products in the array sign. Here the signs are stored in natural order and encoded as in function
qstate12_to_signs in module qstate12io.c. As usual, the integers 0, 1, and 2 (mod 3) are
mapped to 0, ‘+’, and ‘-’, respectively.

Output array signs should have at least (n + 31) >> 5 entries.

3.4.13 C functions in involutions.c

File involutions.c contains functions for transforming involutions of the subgroup 𝐺𝑥0 (of structure
21+24.Co1) of the monster.

We try to transform such involutions to a standard form via conjugation by elements of the monster group.
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Functions

int32_t xsp2co1_involution_invariants(uint64_t *elem, uint64_t *invar)
Compute invariant spaces for an involution in 𝐺𝑥0.

Let 𝑔 be the element of the group 𝐺𝑥0 stored in the array given by parameter elem. Let Λ2 be the
Leech lattice mod 2, with vectors in Λ2 coded in Leech lattice encoding as usual. Conjugation by 𝑔
is a linear operation on Λ2, since the vectors in Λ2 correspond to the elements of the normal subgroup
𝑄𝑥0 of structure 21+24 (modulo the centre of 𝐺𝑥0). Let 𝐴 = 𝐴(𝑔) be the 24 × 24 bit matrix that
performs this operation on Λ2 by right multiplication. Put 𝐴1 = 𝐴 − 1, and let 𝐼1 be the image of
matrix 𝐴1.

In this function we require that the image of 𝑔 in the factor group Co1 of 𝐺𝑥0 has order 1 or 2;
othereise the function fails. That condition is equivalent to 𝐴2 = 1, and also to 𝐴2

1 = 0. If this is the
case then we have:

(ker𝐴1)⊥ = 𝐼1 ⊂ ker𝐴1 = (𝐼1)⊥.

Any element 𝑣 ∈ ker𝐴1 is invariant under 𝑔, and so the corresponding element in 𝑄𝑥0 is invariant
up to sign. The elements of 𝑄𝑥0 invariant under 𝑔 (modulo the center of 𝑄𝑥0) form a subspace
(ker𝐴1)+ of ker𝐴1 of codimension 0 or 1. Let (𝐼1)+ be the orthogonal complement of (ker𝐴1)+.
Then 𝐼1 has the same codimension in (𝐼1)+. The purpose of this function is to compute a basis of
the smaller of the two spaces (𝐼1)+ or ker𝐴1.

We compute an output matrix in the array invar and return the number k of rows of that matrix in
case of success. We use the following column bits of the output matrix.

23,. . . ,0: Basis vector 𝑣𝑖 of 𝐼1 or (𝐼1)+

55,. . . ,32: Preimage (under 𝐴1) of basis vector 𝑣𝑖, undefined if 𝑣𝑖 /∈ 𝐼1

27: Here a nonzero bit in row 0 indicates an error.

In bits 24,. . . ,26 of the output matrix we return the following linear forms on the space spanned by
basis vectors:

Case 1: 𝐼1 = (𝐼1)+ or 𝐼1 = ker𝐴1

Then we return a basis of 𝐼1, and we have 𝑘 = dim 𝐼1 = dim(𝐼1)+ ∈ {0, 8, 12}

Bit 26: 0

Bit 25: type of basis vector (modulo 2)

Bit 24: sign of basis vector in 𝐼1

Case 2: 𝐼1 ̸= (𝐼1)+ and 𝐼1 ̸= ker𝐴1

Then we return a basis of (𝐼1)+, and we have 𝑘 − 1 = dim(𝐼1)+ − 1 = dim 𝐼1 ∈ {0, 8}.

Bit 26: 0 if and only if the basis vector is in 𝐼1

Bit 25: 0

Bit 24: sign of the basis vector if the vector is in 𝐼1, and type of the basis vector (mod 2) otherwise

Parameter invarmust be an array of length 12. Zero lines are appeded to that array so that its length
will be 12.

The function returns the dimension k of the computed basis, and a negative value in case of error.
The return value ERR_QSTATE12_GX0_BAD_ELEM means that that the image of 𝑔 in Co1 has
order greater than 2.

Bits 26,. . . ,0 of the output matrix are echelonized in a special way. Here the columns are processed
in the order:
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26, 25, 24, 11, 22, 21, . . . , 13, 12, 10, 9, . . . , 1, 0, 23.

One of the advantages of this echelonization is that the vector Ω (encoded as 0x800000) will occur
in the basis if it is in the subspace, and that there are many even vectors (i.e. vectors orthogonal to
Ω) in the basis. Also, bits 26, 25, 24 may be nonzero at most in the first two columns of the output
matrix.

int32_t xsp2co1_involution_orthogonal(uint64_t *invar, uint32_t col)
Compute some orthogonal complement for involution invariants.

Let 𝑔 be an element of the group 𝐺𝑥0 such that the image of 𝑔 in Co1 has order 1 or 2. For that
element 𝑔, let 𝐴,𝐴1, and 𝐼1 be as in function xsp2co1_involution_invariants.

In this function the input parameter invar must be equal to the output invar of function
xsp2co1_involution_invariants applied to the element 𝑔.

There is a nondegenerate bilinear form ⟨⟨., .⟩⟩ on 𝐼1 given by

⟨⟨𝑥, 𝑦⟩⟩ = ⟨𝜋(𝑥), 𝑦⟩,

where 𝜋(𝑥) is any preimage of 𝑥 under 𝐴1, and ⟨., .⟩ is the scalar product on the Leech lattice modulo
2. The form ⟨⟨., .⟩⟩ is also called the Wall parametrization, see [Wal63]. If the image of 𝑔 in Co1
has order at most two then the Wall parametrization is a symmetric bilinear form.

The function computes the orthogonal complement 𝑣 of a linear form 𝑙 on the Leech lattice modulo
2 under the Wall parametrization. Then 𝑣 is a vector in the Leech lattice modulo two. If parameter
col is 0 or 1 then we let 𝑙 be the linear form in column col + 25 of matrix invar.

The function returns 𝑣 in case of success and a negative value in case of failure.

[Wal63] G. E. Wall. On the conjugacy classes in the unitary, symplectic and orthogonal groups. J.
Australian Math. Soc. 3, pp 1–63, 1963.

int32_t xsp2co1_involution_find_type4(uint64_t *invar, uint32_t guide)
Find type-4 vector in a space computed by xsp2co1_involution_invariants.

Let 𝑔 be the element of the group𝐺𝑥0, and for that element 𝑔 let𝐴,𝐴1, 𝐼1, and (𝐼1)+ be as in function
xsp2co1_involution_invariants.

Here input parameter invar must be the output invar of function
xsp2co1_involution_invariants applied to the element 𝑔. This function is successful in
case dim 𝐼1 = 8 only.

We return a type-4 vector the space 𝐼1. If no such vector exists then we return 0.

Parameter guide should usually be zero. If guide is a type-4 vector in the Leech lattice mod 2 satis-
fying the assumptions the return value vthen the function returns v = guide. Otherwise parameter
guide is ignored.

int32_t xsp2co1_elem_find_type4(uint64_t *elem, uint32_t guide)
Try to simplify an element in 𝐺𝑥0 via conjugation.

Let 𝑔 be the element of the group 𝐺𝑥0 stored in the array given by parameter elem. In this function
we require that the image of 𝑔 in the factor group Co1 of 𝐺𝑥0 has order 1 or 2; otherwise the function
fails.

Let Λ2 be the Leech lattice mod 2, with vectors in Λ2 coded in Leech lattice encoding as usual. Let
Ω be the standard frame in Λ2.

Then the function tries to find a vector 𝑣 ∈ Λ2 with the following property:

For any ℎ ∈ 𝐺𝑥0 with 𝑣 · ℎ = Ω we have ℎ−1𝑔ℎ ∈ 𝑁𝑥0.

212 Chapter 3. The C interface of the mmgroup project



mmgroup, Release mmgroup v1.0.0

The function returns 𝑣 in case of success and a negative value in case of an error. It returns
ERR_QSTATE12_GX0_BAD_ELEM if no suitable vector 𝑣 has been found.

The function succeeds if the following two conditions hold:

• 𝑔 is in class 1A, 2A, 2B or 4A of the monster group

• 𝑔2 is in subgroup 𝑄𝑥0 of 𝐺𝑥0.

In these two cases there is also a power 𝜏𝑒 of the triality element 𝜏 with

𝜏−𝑒ℎ−1𝑔ℎ𝜏𝑒 ∈ 𝑄𝑥0.

Caution:

The last statement has been checked for classes 1A, 2A and 2B only!

Parameter guide should usually be zero. If guide is a type-4 vector in the Leech lattice mod 2 satis-
fying the assumptions the return value vthen the function returns v = guide. Otherwise parameter
guide is ignored. It is also ignored in case 𝑔 ∈ 𝑄𝑥0.

int32_t xsp2co1_elem_conj_G_x0_to_Q_x0(uint64_t *elem, uint32_t *a)
Try to map an element of 𝐺𝑥0 to 𝑄𝑥0.

Let 𝑔 be the element of the group 𝐺𝑥0 stored in the array given by parameter elem. The function
tries to find an element ℎ in the monster group with ℎ−1𝑔ℎ = 𝑞 ∈ 𝑄𝑥0.

The function succeeds if the following two conditions hold:

• 𝑔 is in class 1A, 2A, 2B or 4A of the monster group

• 𝑔2 is in subgroup 𝑄𝑥0 of 𝐺𝑥0.

The function stores ℎ in the output array a as a word of generators of the monster group. Array a
must be of length 7 . The function returns 𝑞 in bits 24,...,0 of the return value, and number of
atoms in the array a in bits 27, 26, 25 of the return value The data in the array a are padded with
zeros.

The function returns a negative value in case of failure. It returns ERR_QSTATE12_GX0_BAD_ELEM
if no suitable element ℎ can be found.

int32_t xsp2co1_elem_conjugate_involution(uint64_t *elem, uint32_t *a)
Map an involution in 𝐺𝑥0 to a standard form.

Let 𝑔 be an involution of the group 𝐺𝑥0 stored in the array given by parameter elem.

The function computes an element 𝑎 in the monster such that ℎ = 𝑎−1𝑔𝑎 is one of the following
elements of the subgroup 𝑄𝑥0 of 𝐺𝑥0:

If 𝑔 = 1 then ℎ = 𝑎 = 1.

If 𝑔 is a 2A involution then ℎ is the involution in 𝑄𝑥0 corresponding to the Golay cocode word with
entries 2, 3 being set.

If 𝑔 is a 2B involution then ℎ is the central involution 𝑧 in 𝑄𝑥0.

The element 𝑎 is stored in the array a as a word of generators of the monster group. In case of success
the function returns 0x100 * I + len(a), where len(a) is the length of the array a. We put I =
0 if 𝑔 = 1. We put I = 1, 2 if 𝑔 is a 2A or 2B involution, respectively.

The function returns ERR_QSTATE12_GX0_BAD_ELEM if 𝑔 is not an involution.

The array a must have length at least 14.
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3.4.14 C functions in xsp2co1_traces.c

File xsp2co1_traces.c contains functions for computing characters of some representations of the sub-
group 𝐺𝑥0 (of structure 21+24.Co1) of the monster.

Such computations can be very expensive, especially for some classes of involutions, or for elements that
map to involutions in the factor group Co1 of 𝐺𝑥0.

This file contains a function xsp2co1_elem_involution_class for the classification of elements that
map to involutions in Co1.

Function xsp2co1_traces_fast uses a precomputed table for computing the characters of el-
ements of 𝐺𝑥0. That table is addressed by the class information computed by function
xsp2co1_elem_involution_class. The functions in module mmgroup\tests\test_involutions.
make_involution_samples.py precompute that table. We simply copy and paste the table from the
output of that python function to to this file.

The precomputation of the table requires the function xsp2co1_traces_all in file xsp2co1_elem.c.
That function computes the same characters as function xsp2co1_traces_fast without using precom-
puted tables.

Function xsp2co1_elem_involution_class does not use a precomputed table, but the verification of
this function requires inspection of the output of the module make_involution_samples.pymentioned
above.

Functions

int32_t xsp2co1_elem_involution_class(uint64_t *elem)
Compute class information for certain elements of 𝐺𝑥0

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. If 𝑔 maps to an involution in the
factor group Co1 of 𝐺𝑥0 then the function returns a nonzero value indicating some class information
about 𝑔. Otherwise the function returns 0.

The class information in the return value is to interpreted as follows:

bits 7 .. 0: class of element g in the Monster group, e.g
0x21 means class 2A,
0x41 means class 4A, 0x42 means class 4B, etc.

bits 11 .. 8: Class of element g in the factor group Co_1
0 means class 1A in Co_1
1 means class 2A in Co_1
2 means class 2B in Co_1
3 means class 2C in Co_1

bit 12: 0 if g and -g are in the same class in the Monster
1 otherwise

bit 13: 1 if q g is equal to or powers up to -1
0 otherwise

All other bits in the return value are set to zero.

Here −1 is the central involution 𝑥−1 in 𝐺𝑥0, and −𝑔 = 𝑥−1 · 𝑔 .
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Write ℎ(𝑔) as an abbreviation for the result of this function applied to an element 𝑔 of 𝐺𝑥0. Then the
following assertions have been checked computationally in files make_involution_samples.py,
or test_xp2_traces.py, or can easily be checked mathematically.

Possible values ℎ(𝑔) (depending on the class of 𝑔𝑄𝑥0) in Co1 are:

class 1A: 0x1011, 0x3022, 0x0022, 0x0021, 0x2041
class 2A: 0x1121, 0x1122, 0x0143, 0x2143, 0x0142, 0x0141, 0x0122
class 2B: 0x0244, 0x2244
class 2C: 0x0322, 0x0341, 0x0344, 0x2382, 0x0343, 0x0342

The value ℎ(𝑔) determines the characters of the representations 98280𝑥, 299𝑥, 24𝑥, 4096𝑥 of 𝑔
uniquely, where by construction of 𝐺𝑥0 the last two characters are determined up to sign only.

The class of an involution 𝑔 is determined uniquely by ℎ(𝑔).

int32_t xsp2co1_traces_fast(uint64_t *elem, int32_t *ptrace)
Compute relevant characters of element of 𝐺𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be stored in the array elem in G_x0 representation. The function computes the
characters of the representations 𝜌24, 𝜌576, 𝜌4096, 𝜌98280 and stores the result in ptrace[0],...,
ptrace[3] in that order. Here 𝜌576 is the tensor square of 𝜌24.

This function returns 0 in case of success and a nonzero value otherwise.

Note that the tensor product 𝜌24 ⊗ 𝜌4096 is well defined, but the factors of that product are defined
up to sign only. We normalize the characters corresponding to 𝜌24 and 𝜌4096 so that the first nonzero
value of these two characters (in the order given above) is positive.

So this function performs the same action as function xsp2co1_traces_all in file xsp2co1_elem.
c, but it is considerably faster, since it uses precomputed tables for som hard cases.

int32_t xsp2co1_elem_conjugate_involution_Gx0(uint64_t *elem, uint32_t guide, uint32_t *a)
Map an involution in 𝐺𝑥0 to a standard form.

Let 𝑔 be an involution in the group 𝐺𝑥0 stored in the array given by parameter elem in G_x0 repre-
sentation.

The function computes an element 𝑎 in 𝐺𝑥0 such that ℎ = 𝑎−1𝑔𝑎 is a (fixed) representative of the
class of 𝑔 in the group 𝐺𝑥0.

The element 𝑎 is stored in the array a as a word of generators of the monster group. In case of
success the function returns 0x100 * iclass + len(a), where len(a) is the length of the data
in the array a, and iclass is explained below. The function returns a negative value in case of failure,
e.g. if 𝑔 has order greater than 2. The array a must have length at least 10.

In the sequel we list the representatives of all classes of involutions in 𝐺𝑥0 computed by this function.
For any such representative we also list the number iclass indicating the class of the involution as
computed by function xsp2co1_elem_involution_class.

iclass = 0x1101: the neutral element 𝑥1

iclass = 0x3022: the central involution 𝑥−1

iclass = 0x0021: the element 𝑥{2,3}

iclass = 0x0022: the element 𝑥Ω

iclass = 0x1121: the element 𝑦𝑜
iclass = 0x1122: the element 𝑥−1𝑦𝑜

iclass = 0x0122: the element 𝑦𝑜𝑥{8,9}
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iclass = 0x0322: the element 𝑦𝐷𝑥{0,12}

Here in 𝑥{𝑖,𝑗} the index {𝑖, 𝑗} indicates a Golay cocode word of length 2 given by the entries 𝑖
and 𝑗. Octad 𝑜 is the standard octad {0, 1, 2, 3, 4, 5, 6, 7}. Dodecad 𝐷 is the standard dodecad
{0, 4, 8, 13, 14, 15, 17, 18, 19, 21, 22, 23}.

Parameter guide should usually be zero. If guide is a type-4 vector 𝑣4 in the Leech lattice mod
2 such that the two conditions ℎ = 𝑎−1𝑔𝑎 and 𝑣4 · 𝑎 = Ω can both be achieved then we compute
an element 𝑎 satisfying these two conditions. Otherwise parameter guide is ignored. Here Ω is the
standard frame in the Leech lattice.

int32_t xsp2co1_map_involution_class_Gx0(uint32_t iclass, uint32_t *a)
Map an involution class in 𝐺𝑥0 to its representative.

Here parameter class must be a class number of an involution in the group 𝐺𝑥0 as returned by
function xsp2co1_elem_conjugate_involution_Gx0.

Then the function computes the representative ℎ of the class of involutions in 𝐺𝑥0 as it is computed
by function xsp2co1_elem_conjugate_involution_Gx0.

The element ℎ is stored in the array a as a word of generators of the monster group. In case of
success the function returns the length len(a) of the data in the array a. The function returns a
negative value in case of failure, e.g. if iclass does not correspond to an involution. The array a
must have length at least 2.

3.4.15 C functions in xsp2co1_map.c

File xsp2co1_map.c contains functions for computing an element 𝑔 of the group 𝐺𝑥0 = 21+24.Co1 from
the action of 𝑔 on the normal subgroup 𝑄𝑥0 = 21+24 of 𝐺𝑥0.

Here the group 𝐺𝑥0 is the maximal subgroup of the Monster used in our construction of the Monster. We
store an element of 𝐺𝑥0 as word of generators of that group as described in filemmgroup_generators.h.
Internally, we also use the G_x0 representation for elements of 𝐺𝑥0 as described in file xsp2co1.c.

Elements of the group 𝑄𝑥0 are stored in Leech lattice encoding as described in section Description of
the mmgroup.generators extension.

Note that an element of 𝐺𝑥0 is determined by its action on 𝑄𝑥0 up to sign only.

The main function xsp2co1_elem_from_mapping in this module tries to find the ‘nicer’ of the elements
±𝑔 from its action on 𝑄𝑥0.

Functions

int32_t xsp2co1_Co1_get_mapping(uint32_t *m1, uint32_t *m2, uint32_t *m_out)
Compute a certain mapping from 𝑄𝑥0 to itself.

Let 𝑔 ∈ 𝐺𝑥0 be such that 𝑔 maps𝑚1,𝑗 to𝑚2,𝑗 via conjugation, for 𝑚𝑖,𝑗 ∈ 𝑄𝑥0, 𝑖 = 1, 2; 0 ≤ 𝑗 ≤ 24.
If the 𝑚1,𝑗 (considered as vectors in Λ/2Λ) are linear independent then there is at most one such 𝑔,
up to sign.

Here inputs 𝑚1,𝑗 ,𝑚2,𝑗 are given in the arrays m1, m2 in Leech lattice encoding.

The function computes 𝑔 as a mapping 𝑚0,𝑗 ↦→ 𝑚3,𝑗 , where 𝑚0,𝑗 is the standard basis of Λ/2Λ
(with 𝑚0,𝑗 = 1 << j in Leech lattice encoding). The function stores the vectors 𝑚3,𝑗 in the array
m_out of length 24 in Leech lattice encoding.

Let 𝑜 be the odd part of the order of 𝑔, so that 𝑔 has order 2𝑘 · 𝑜.
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The function returns a negative value if it detects an error, and it returns 𝑜 if it does not detect any
error. If the function returns 𝑜 ≥ 0 and the output is a correct image of the standard basis then there
exists a 𝑔 ∈ 𝐺𝑥0 that maps 𝑚1,𝑗 to 𝑚2,𝑗 . The order of any such element 𝑔 divided by 𝑜 is a power of
two.

Any overlapping between the arrays referred by m1, m2, m_out is allowed.

int32_t xsp2co1_Co1_matrix_to_word(uint32_t *m, uint32_t *g)
Compute preimage in 𝐺𝑥0 of automorphism on 𝑄𝑥0.

Let matrix 𝑚 (given by parameter m) be a 24 times 25 bit matrix that describes an automorphism 𝑔′

acting on 𝑄𝑥0. Here row m[i] is the image of the (positive) element in 𝑄𝑥0 corresponding to the
i-th basis vector of Λ/2Λ, and m[i] is encoded in Leech lattice encoding.

If possible, the function computes a 𝑔 ∈ 𝐺𝑥0 that acts on 𝑄𝑥0 by conjugation in the same way as 𝑔′
acts on 𝑄𝑥0. If such a 𝑔 exists, it is determined up to sign only.

In case of success the function stores 𝑔 as a word of generators of 𝐺𝑥0 in the buffer referred by
parameter g and returns the length of that word. In case of failure the function returns a negative
value.

Array g must have length at least 10.

int32_t xsp2co1_elem_from_mapping(uint32_t *m1, uint32_t *m2, uint32_t *g)
Compute 𝑔 ∈ 𝐺𝑥0 from its operation on 𝑄𝑥0.

Let 𝑔 ∈ 𝐺𝑥0 be such that 𝑔 maps𝑚1,𝑗 to𝑚2,𝑗 via conjugation, for 𝑚𝑖,𝑗 ∈ 𝑄𝑥0, 𝑖 = 1, 2; 0 ≤ 𝑗 ≤ 24.
If the 𝑚1,𝑗 (considered as vectors in Λ/2Λ) are linear independent then there is at most one such 𝑔,
up to sign.

Here inputs 𝑚1,𝑗 ,𝑚2,𝑗 are given in the arrays m1, m2 in Leech lattice encoding.

If possible then the function computes a 𝑔 ∈ 𝐺𝑥0 that maps 𝑚1,𝑗 to 𝑚2,𝑗 via conjugation. In case of
success it stores 𝑔 as a word of generators of 𝐺𝑥0 in the buffer referred by parameter g and returns
the length of that word in the lower 8 bits of the return value. In case of failure the function returns
a negative value.

Array g must have length at least 10.

Note that 𝑔 is determined up to sign only. The function makes a considerable effort to disambiguate
the two elements ±𝑔.

If one of the two element ±𝑔 has odd order then the other one has necessarily even order; in that
case we return the element with odd order. Otherwise both elements have the same (even) order
2𝑘 · 𝑜, 𝑜 odd. Then at most one of the elements ±𝑔𝑜 may have a negative character 𝜒(𝑔𝑜) in the
representation 𝜌24 ⊗ 𝜌4096 of 𝐺𝑥0; and in this case we return an element with 𝜒(𝑔𝑜) ≥ 0. This leads
to a disambiguation of ±𝑔 in case 𝜒(𝑔𝑜) ̸= 0.

We store the order of the computed element 𝑔 in bits 15. . . ,8 of the return value. We set bit 16 of the
return value precisely if we could disambiguate 𝑔 from −𝑔, i.e. in case 𝜒(𝑔𝑜) ̸= 0. (Note that 𝑔𝑜 = 1
if 𝑔 has odd order, implying 𝜒(𝑔𝑜) > 0.)

The function returns a negative value in case of failure.
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3.5 Description of the mmgroup.mm_op extension

Module mmgroup.mm_op is implemented as an extension in the mmgroup package implemented in Cython. The main
source file for that extension is mm_op.pyx in directory src.mmgroup.dev.mm_op. Each documented .c in this
module function has been wrapped by a Cython function with the same name and the same signature.

Module mmgroup.mm_op implements the 196884-dimensional rational representation 𝜌𝑝 of the monster group modulo
several fixed odd moduli 𝑝 = 2𝑘 − 1.

3.5.1 Representation of a vector in 𝜌𝑝

We describe the representations of a vector in 𝜌𝑝

The most important representation of a vector in 𝜌𝑝 is the internal representation. All operations of the monster group
are performed on vectors in in 𝜌𝑝 in internal representation.

In the internal representation a vector is stored as an array of 247488 entries, where each entry is a bit field representing
an integer modulo p. Some components of a vector are stored twice in that array and some entries of the array are
unused. This special structure facilitates the implementation of the operations of the monster group.

The entries of a vector are organized as tuples (tag, i0, i1). Here indices i0, i1 refer to a two-dimensional array
as indicated in column Size of the following table. As usual in C, entries with adjacent last index i1 are stored in
adjacent locations. For a mathematical description of an entry (tag, i0, i1), see section The Representation of the
Monster Group in the API reference.

Table 1: Array sizes for tags in the internal representation

Tag Size Space used Remarks Offset
A 24 x 24 24 x 32 (1), (2) 0
B 24 x 24 24 x 32 (1), (2), (3) 768
C 24 x 24 24 x 32 (1), (2), (3) 1536
T 759 x 64 759 x 64 (4), 2304
X 2048 x 24 2048 x 32 (1), 50880
Z 2048 x 24 2048 x 32 (1), 116416
Y 2048 x 24 2048 x 32 (1), 181952

Remarks

1. As indicated in column Space used, an array of size n times 24 is stored in a space reserved for an array of size
n times 32. So the entry with index (tag, i0, i1) is stored at location Offset(tag) + 32 * i0 + i1.
Unused entries must be equal to zero.

2. The entry given by (tag, i0, i1) must be equal to the entry given by (tag, i1, i0).

3. The diagonal entry given by (tag, i0, i0) must be equal to zero.

4. The entry with index (T, i0, i1) is stored at location Offset(T) + 64 * i0 + i1.

The entries of a vector in internal representation are stored a one-dimensional array of integers of type uint_mmv_t.
Here type uint_mmv_tmay be one of the C integer types uint64_t or uint32_t, depending on the value INT_BITS.
At present INT_BITS is set to the value 64. Several adjacent entries of a vector are stored as bit fields in a single integer
of type uint_mmv_t. Entries with a lower index are stored at bits with lower valence.

The number of bits in a bit field is always a power of two. So e.g. for p = 3 we use 2 bits; for p = 7 we use 4 bits
with the highest bit unused. In case p = 2**k - 1, legal values for an entry are 0,...,2**k - 1, with 2**k - 1
equal to 0. Thus negation of a value can be done by complementing all k bits of that value. Apart from negation,
the matrices corresponding to operations of the monster may add, subtract and half the entries of a vector (modulo
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p). These operations can easily be done on several entries simultaneously by manipulating a just single integer of type
uint_mmv_t.

As indicated above, we reserve 32 entries for arrays of integers modulo p with 24 entries. So we require about 25.7%
more memory than necessary. In some cases we need this extra memory anyway. E.g. for p = 3 a 64-bit integer may
store 32 entries, so that there will always be a slack of 8 entries when storing 24 entries.

Function mm_aux_mmv_size(p) returns the number of integers of type uint_mmv_t required for storing a vector in
external representation.

When writing or calculating entries with tags A, B, C then the high-level function for manipulating vectors in internal
representation make sure that e.g. entries with indices (A, i0, i1) and (A, i1, i0) are always set to the same
value. These functions also make sure that unused bits in a bit field and unused bit fields are set to zero. Note that a bit
field with value zero may contain the value p instead.

The external representation of a vector in 𝜌𝑝

There is also a so-called external representation of a vector in R_p. This is used to facilitate the access to vectors
by external modules. Here the vector is represented as an array of 196884 integers of type uint8_t. Basis vectors are
ordered similar to the ordering for the internal representation, but here the entries are in one-to-one correspondence
with the basis vectors. In the external representation there are no unused or duplicated entries.

More precisely, the order of the entries is:

Table 2: Order of entries in external representation

Entries Condition No of entries Offset
(A, i0, i1) i0 = i1 24 0
(A, i0, i1) i0 > i1 276 24
(B, i0, i1) i0 > i1 276 300
(C, i0, i1) i0 > i1 276 576
(T, i0, i1) 759*64 852
(X, i0, i1) 2048*24 49428
(Z, i0, i1) 2048*24 98580
(Y, i0, i1) 2048*24 147732

Indices (tag, i,j) for tag = A, B, C, i > j are ordered as follows:

• (1,0),

• (2,0), (2,1),

• (3,0), (3,1), (3,2),

• ...

• (i,0), (i,1), ..., (i,i-1),

• ...

• (24,0), (24,1), ..., (24,23).

Function mm_aux_bytes_to_mmv() converts a vector from external to internal representation, Function
mm_aux_mmv_to_bytes() does the inverse conversion.

The sparse representation of a vector in 𝜌𝑝

The Python interface to vectors in 𝜌𝑝 is optimized for readability and not for speed. Here a typical task is to read
and modify single entries of a vector. In the internal representation the coordinates of a vector are indexed by tuples
containing a string. Transferring tuples or strings from Python to C is awful. Here we need a representation of a vector
in 𝜌𝑝 where a single entry of a vector can be stored in an integer variable.
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A vector in 𝜌𝑝 can be stored in the sparse representation. Here a vector is stored as an array of 32-bit integers, where
each entry stands for a multiple of a basis vector. A component of a vector is stored in the bit fields of an integer as a
tuple (tag, i0, i1, value). Here the tuple (tag, i0, i1) is as in the external representation, and value is the
value of the coordinate of the vector corresponding to (tag, i0, i1). Entries with coordinate zero may be dropped.
A 32-bit integer encodes a tuple (tag, i0, i1, value) in bit fields as shown in the following table.

Table 3: Bit fields in the sparse representation

Bits Meaning
27..25 Tag: A = 1, B = 2, C = 3, T = 4, X = 5, Z = 6, Y = 7
24..15 Index i0
13.. 8 Index i1
7.. 0 The value of the coordinate of the basis vector; if the modulus p is 2**k - 1

then only the lowest k bits are evaluated.

In a C function the length of a sparse representation of a vector must be given as a parameter to the function. The order
of the entries is irrelevant in the sparse representation. A sparse representation generated by a C function contains
at most one entry for each tuple (tag, i0, i1). On input, entries with several equal tuples (tag, i0, i1) are
accepted. Unless stated otherwise, the corresponding values of such equal tuples are added.

In an entry with tag A, B, or C generated by this module we always have i0 >= i1. The value of an entry generated
by this module is always less than the modulus p.

When reading an entry, a value with 0 <= value <= p is accepted. Entries with tag A, B, or C and i < j are also
accepted. Illegal tags or indices are usually ignored on input.

3.5.2 Header file mm_basics.h

The header file mm_basics.h contains basic definitions for dealing with vectors of the 198884-dimensional repre-
sentation of the monster group, as described in The C interface of the mmgroup project, section Description of the
mmgroup.mm extension.

It also contains prototypes for the C files in the mm extension. This extension comprises the files mm_aux.c, mm_crt.c,
mm_group_word.c, mm_random.c, mm_tables.c, mm_tables_xi.c.

Defines

mm_aux_bad_p(p)
Return 0 if p is a good modulus and a nonzero value otherwise.

Typedefs

typedef uint64_t uint_mmv_t
Used for the representation of the monster group.

Internally, a vector in the 196884-dimensional representation of the monster is stored as an array of integers of
type uint_mmv_t. Here several entries are stored in such an integer. See enum MM_AUX_OFS_type for more
details.
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Enums

enum MM_AUX_OFS
This enumeration contains the offsets for the tags A,B,C,T,X,Z,Y in a vector in the 196884-dimensional repre-
sentation of the monster, stored in the internal representation.

Such an offset counts the number of entries starting at the beginning of th vector. Note that several entries of a
vector are stored in a 64-bit integer. Also there may be duplicate or unused entries in a vector, in order to speed
up the operation of the monster group on a vector.

Values:

enumerator MM_AUX_OFS_A
Offset for tag A

enumerator MM_AUX_OFS_B
Offset for tag B

enumerator MM_AUX_OFS_C
Offset for tag C

enumerator MM_AUX_OFS_T
Offset for tag T

enumerator MM_AUX_OFS_X
Offset for tag X

enumerator MM_AUX_OFS_Z
Offset for tag Z

enumerator MM_AUX_OFS_Y
Offset for tag Y

enumerator MM_AUX_LEN_V
Total length of the internal representation

enum MM_AUX_XOFS
This enumeration contains the offsets for the tags A,B,C,T,X,Z,Y in a vector in the 196884-dimensional repre-
sentation of the monster, stored in the external representation.

In external representation, a vector is stored as a contiguous array of bytes.

Values:

enumerator MM_AUX_XOFS_D
Offset for diagonal entries of tag A

enumerator MM_AUX_XOFS_A
Offset for tag A
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enumerator MM_AUX_XOFS_B
Offset for tag B

enumerator MM_AUX_XOFS_C
Offset for tag C

enumerator MM_AUX_XOFS_T
Offset for tag T

enumerator MM_AUX_XOFS_X
Offset for tag X

enumerator MM_AUX_XOFS_Z
Offset for tag Z

enumerator MM_AUX_XOFS_Y
Offset for tag Y

enumerator MM_AUX_XLEN_V
Total length of the external representation

enum MM_SPACE_TAG
This enumeration defines the values of the tags A,B,C,T,X,Z,Y in a vector in the 196884-dimensional repre-
sentation of the monster, stored in the sparse representation.

In the sparse representation an entry of a vector is stored as a tuple of bit fields (tag, par1, par2, value)
inside an integer of type uint32_t as follows:

Bits 27,...,25: tag (as indicated below)

Bits 24,...,14: par1 (an integer of up to 11 bits)

Bits 13,..., 8: par2 (an integer of up to 6 bits)

Bits 7,..., 0: value (Reserved for the value of an entry)

Values:

enumerator MM_SPACE_TAG_A
Encodes tag A

enumerator MM_SPACE_TAG_B
Encodes tag B

enumerator MM_SPACE_TAG_C
Encodes tag C
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enumerator MM_SPACE_TAG_T
Encodes tag T

enumerator MM_SPACE_TAG_X
Encodes tag X

enumerator MM_SPACE_TAG_Z
Encodes tag Z

enumerator MM_SPACE_TAG_Y
Encodes tag Y

struct mm_sub_op_pi64_type
#include “mm_basics.h” Auxiliary structure for the structure mm_sub_op_pi_type

An array of type mm_sub_op_pi64_type[759] encodes the operation of 𝑥𝜖𝑥𝜋 on the representation of the
monster group for entries with tag T. Assume that entry (T, i, j) is mapped to entry +-(T, i1, j1). Then
i1 depends on i only, and j1 depends on i and j. For fixed i the mapping j -> j1 is linear if we consider the
binary numbers j and j1 as bit vectors.

Entry i1 of the array of type mm_sub_op_pi64_type[759] describes the preimage of (T, i1, j1) for all 0
<= j1 < 64 as documented in the description of the members preimage and perm.

Note that the values 1, 3, 7, 15, 31, 63 occur as differences j1 ^ (j1 - 1) when counting j1 from 0 up to 63.
So the preimage of (T, i1, j1) can be computed from the preimage of (T, i1, j1 - 1) using linearity
and the approprate entry in member perm.

We remark that in case of an odd value epsilon the mapping for tag T requires a postprocessing step that cannot
be derived from the infomration in this structure. Then entry (T, i, j) has to be negated if the bit weight of
the subset of octade i corresponding to index j has bit weight 2 modulo 4.

In the sequel we describe the meaning of entry i1 an an array of elements of type mm_sub_op_pi64_type.

Public Members

uint16_t preimage
Bits 9. . . 0 : preimage i such that (T, i, .) maps to +-(T, i1, .)

Bit 12: sign bit: (T, i, .) maps to -(T, i1, .) if bit 12 is set

uint8_t perm[6]
Member perm[k] is a value vsuch that (T, i, v) maps to +-(T, i1, 2 * 2**k - 1)

struct mm_sub_op_pi_type
#include “mm_basics.h” Structure used for preparing an operation 𝑥𝜖𝑥𝜋 .

Function mm_sub_prep_pi computes some tables required for the operation of 𝑥𝜖𝑥𝜋 on the representation of
the monster group, and stores these tables in a structure of type mm_sub_op_pi_type.

The structure of type mm_sub_op_pi_type has the following members:
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Public Members

uint32_t eps
A 12-bit integer describing an element 𝜖 of the Golay cocode.

uint32_t pi
An integer describing the element 𝜋 of the Mathieu group 𝑀24 as in module mat24_functions.c.

uint8_t perm[24]
The permutation 0...23 -> 0...23 given by the element 𝜋 of 𝑀24.

uint8_t inv_perm[24]
The inverse of the permutation perm.

uint32_t benes_net[9]
A representation of Benes network for computing permutationperm, as described in function
mat24_perm_to_net in file mat24_functions.c.

uint16_t tbl_perm24_big[2048 + 72]
For tags A, B, C, X, Y, Z, an entry (tag, i, j) of the representation of the monster is mapped to
entry (tag1, i1, j1), with i1 depending on i (and the tag), and j1 depending on j only.

If tbl_perm24_big[i1] & 0x7ff = i for 0 <= i1 < 2048 then (tag, i, j) ia mapped to (Tag,
i1, perm[j]), up to sign, for tags X, Y and Z. In case of an odd 𝜖, tags Y and Z have to be exchanged. The
value tbl_perm24_big[2048 + 24*k + i1] & 0x7ff describes the preimage of (tag, i1, j1) in
a similar way, where tag = A, B, C, for k = 0, 1, 2.

Bits 12,. . . ,15 of tbl_perm24_big[i1] encode the signs of the preimages of the corresponding entry of
the rep. Bits 12, 13, and 14 refer to the signs for the preimages for the tags X, Z and Y, respectively. Bit 15
refers to the signs for the preimages for tags A, B and C. If the corresponding bit is set, the preimage has to
be negated.

Note that function mat24_op_all_autpl in module mat24_functions.c computesthe first 2048 en-
tries of the table.

mm_sub_op_pi64_type *tbl_perm64
A description of the operation of 𝑥𝜖𝑥𝜋 on the entries with tag T, see structure mm_sub_op_pi64_type.
Entry d of the Arrary refers to the octad o(d) with number d. It contains the followint information_

Bits 5,. . . ,0: Associator \delta' = A(o(d), f)) encoded as a suboctad

Bits 11,. . . ,6: Associator a = A(o(d), ef)) encoded as a suboctad.

Caution:

Pointer tbl_perm64 must be initialized with an array of type mm_sub_op_pi64_type
a_tbl_perm64[759].

struct mm_sub_op_xy_type
#include “mm_basics.h” Structure used for preparing an operation 𝑦𝑓𝑥𝑒𝑥𝜖.

The operation of 𝑔 = 𝑦𝑓𝑥𝑒𝑥𝜖, (or, more precisely, of its inverse 𝑔−1) on the representation of the monster
group is described in section Implementing generators of the Monster group in the The mmgroup guide for
developers.
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Function mm_sub_prep_xy in file mm_tables.c collects the data required for this operation in a structure of
type mm_sub_op_xy_type.

Public Members

uint32_t f
A 13-bit integer describing an element 𝑓 of the Parker loop.

uint32_t e
A 13-bit integer describing an element 𝑒 of the Parker loop.

uint32_t eps
A 12-bit integer describing an element 𝜖 of the Golay cocode.

uint32_t f_i
Bit 𝑖 of member f_i is the scalar product of 𝑓 and the singleton cocode word (𝑖).

These bits are used for the operation of 𝑔−1 on entries with tag A.

uint32_t ef_i
Bit 𝑖 of member ef_i is the scalar product of 𝑒𝑓 and the singleton cocode word (𝑖).

These bits are used for the operation of 𝑔−1 on entries with tags B, and C.

uint32_t lin_i[3]
Put 𝑔0 = 𝑒, 𝑔1 = 𝑔2 = 𝑓 . For k = 0, 1,2, the bit 𝑖 of member lin_i[k] is the scalar product of 𝑔𝑘 and
the singleton cocode word (𝑖).

These bits are used for the operation of 𝑔−1 on entries with tags X, Z, and Y.

uint32_t lin_d[3]
Let U_k = X, Z, Y for k = 0, 1, 2. If the cocode element 𝜖 is even then we put U'_k = U_k, other-
wise we put U'_k = X, Y, Z for k = 0, 1, 2. The operation 𝑔−1 maps the vector with tag (U_k, d,
i) to (-1)**s times the vector with tag (U'_k, d ^ lin[d], i). Here ** denotes exponentiation and
we have

s = s(k, d, i) = (lin_i[k] >> i) + (sign_XYZ[d] >> k).

If k = 0 and 𝜖 is odd then we have to correct s(k, d, i) by a term <d, i>.

uint8_t *sign_XYZ
Pointer sign_XYZ refers to an array of length 2048. This is used for calculations of signs as described above.
Here we use the formula in section Implementing generators of the Monster group of the mmgroup
guide for developers, dropping all terms depending on i.

uint16_t *s_T
Pointer s_T refers to an array of length 759. Entry d of this array refers to the octad o(d) with number d.
The bits of entry d are interpreted as follows:

Bits 5,. . . ,0: The asscociator delta' = A(o(d), f) encoded as a suboctad of octad o(d)).
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Bits 13,. . . ,8: The asscociator alpha = A(o(d), ef) encoded as a suboctad of octad o(d)). From his
information we can compute the scalar product <ef, \delta> for each suboctad delta of o(d) as an
intersection of tow suboctads. Here we assume that delta is represented as such a suboctad.

Bit 14: The sign bit s(d) = P(d) + P(de) + <d, eps>, where P(.) is the squaring map in the Parker
loop.

Bit 15: Parity bit |eps| of the cocode word eps.

Then 𝑔−1 maps the vector with tag (T, d, delta) to (-1)**s' times the vector with tag (T, d, \
delta ^ delta'). Here ** denotes exponentiation and we have

s' = s'(T, d, delta) = s(d) + <\alpha, \delta> + |delta| * |eps| / 2.

Here the product <\alpha, \delta> must be computed as the bit length of an intersection of two suboc-
tads.

3.5.3 Header file mm_op_p.h

3.5.4 C interface for file mm_index.c

File mm_index.c provides the basic functions for converting an index of a vector of the 196884-diemnsional represen-
tation of the monster between internal, external, and sparse notation.

Functions

uint32_t mm_aux_index_extern_to_sparse(uint32_t i)
Convert an index from external to sparse representation.

The function converts an index i for the external representation of a vector to an index for the sparse representation
of a vector and returns the converted index. The function returns 0 in case i >= 196884`.

Indices for the sparse representation are defined as in enum MM_SPACE_TAG in file mm_basics.h.

void mm_aux_array_extern_to_sparse(uint32_t *a, uint32_t len)
Convert index array from external to sparse representation.

The function converts an array a of indices for the external representation to an array of indices for the sparse
representation of a vector. All indices in the array a of length len are converted in place, using function
mm_aux_index_extern_to_sparse.

int32_t mm_aux_index_sparse_to_extern(uint32_t i)
Convert an index from sparse to external representation.

The function converts an index i for the sparse representation of a vector to an index for the external representation
of a vector and returns the converted index. The function returns -1 if the input i denotes an illegal index. The
coordinate value encoded in the input i is ignored.

Indices for the sparse representation are defined as in enum MM_SPACE_TAG in file mm_basics.h.

int32_t mm_aux_index_sparse_to_leech(uint32_t i, int32_t *v)
Convert sparse index to a short vector in the Leech lattice.

The function converts an index i for the sparse representation of a vector to a vector v in the Leech lattice.
This conversion is successful if i denotes a legal index for one of the tags tags B, C, T, X. Then the function
computes a short Leech lattice vector (scaled to norm 32) in the array v. Output v is determined up to sign only;
that sign is implementation dependent.

The function returns 0 in case of a successful conversion and -1 in case of failure.
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uint32_t mm_aux_index_sparse_to_leech2(uint32_t i)
Convert sparse index to a short vector in the Leech lattice mod 2.

The function converts an index i for the sparse representation of a vector to a vector v in the Leech lattice mod 2.
This conversion is successful if i denotes a legal index for one of the tags tags B, C, T, X. The function returns
a short Leech lattice vector modulo 2, encoded in Leech lattice encoding, as described in section Description
of the mmgroup.generators extension.

The function returns 0 in case of failure.

uint32_t mm_aux_index_leech2_to_sparse(uint32_t v2)
Convert short vector in the Leech lattice mod 2 to sparse rep.

The function converts an value v2 representing a vector in the Leech lattice mod 2 to a sparse index and returns
that sparse index. It returns 0 if v2 is not a short Leech lattice vector.

uint32_t mm_aux_index_intern_to_sparse(uint32_t i)
Convert an index from internal to sparse representation.

The function converts an index i for the internal representation of a vector to an index for the sparse representation
of a vector and returns the converted index. The function returns 0 in case of a bad index.

Indices for the sparse representation are defined as in enum MM_SPACE_TAG in file mm_basics.h.

int32_t mm_aux_index_sparse_to_intern(uint32_t i)
Convert an index from sparse to internal representation.

The function converts an index i for the sparse representation of a vector to an index for the internal representation
of a vector and returns the converted index. The function returns -1 if the input i denotes an illegal index. The
coordinate value encoded in the input i is ignored.

Indices for the sparse representation are defined as in enum MM_SPACE_TAG in file mm_basics.h.

int32_t mm_aux_index_extern_to_intern(uint32_t i)
Convert an index from external to internal representation.

The function converts an index i for the external representation of a vector to an index for the internal represen-
tation of a vector and returns the converted index. The function returns -1 in case i >= 196884.

int32_t mm_aux_index_check_intern(uint32_t i)
Check an index in internal representation.

The function checks an index i in the internal representation of a vector. Some entries of the vectors are stored
at two different locations, e.g entries A[i,j], B[i,j], C[i,j] for i != j.

The function returns the other location of the same entry (as an index in internal representation) if there is any.
It returns 0 if that entry is stored at exactly one location, and -1 if index i is illegal.

3.5.5 C interface for file mm_aux.c

File mm_aux.c provides the basic functions for dealing with the representations of the monster group modulo various
small integers p = 2**n-1, 2 <= n <= 8. Here the integer p is called the modulus.

Especially, we deal with vectors in such a representation as described in The C interface of the mmgroup project, section
Description of the mmgroup.mm extension.

For such a vector there is an internal representation, an external representation, and also a sparse representation, as
described in the documentation mentioned above.

The functions in this file provide access to the internal representation of such a vector. The also support the conversion
between the different representations of a vector.
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Usually, the order of the parameters of functions in this file is:

1. Modulus p, if present

2. The input value or the input data array

3. Any parameters that do not affect the positions in the output array

4. The output data array

5. Parameters (e.g. lengths, indices) that affect the positions of the
data being modified in the output array

Among others, functions in this file use functions from file mm_index.c for converting indices of vectors to different
representations.

A vector modulo p is organized in rows of 32 entries. In many rows only 24 of the 32 bits are used; but in some all 32
bit are used. Dtails are given in the API reference of the project.

Functions

uint8_t mm_aux_get_mmv(uint32_t p, uint_mmv_t *mv, uint32_t i)
Read entry at index from vector in internal representation.

The function returns the entry with index i of the vector mvwith modulus p. The return value is reduced modulo
p. Index i must be given in internal representation. The function returns garbage in case of an illegal index.

void mm_aux_put_mmv(uint32_t p, uint8_t value, uint_mmv_t *mv, uint32_t i)
Write entry to a vector at an index in internal representation.

The function sets the entry of the vector mv with modulus p at the index i to the given value. 0 <= value <=
p must hold.

Here the index i must be given in internal representation. Writing at an illegal index performs no action.

void mm_aux_add_mmv(uint32_t p, uint8_t value, uint_mmv_t *mv, uint32_t i)
Add to entry of a vector at an index in internal representation.

The function adds the given value to the entry of the vector mv with modulus p at the index i. Here 0 <= value
<= p must hold.

The index i must be given in internal representation. Writing at an illegal index performs no action.

void mm_aux_read_mmv32(uint32_t p, uint_mmv_t *mv, uint32_t i, uint8_t *b, uint32_t len)
Read entries from vector in internal representation.

Read entries of vector mv (stored in internal representation with modulus p) and store these entries in the array
b. Here len is the number of rows to be read starting at row i. Each row consists of 32 entries.

Here p must be a legal modulus.

void mm_aux_write_mmv32(uint32_t p, uint8_t *b, uint_mmv_t *mv, uint32_t i, uint32_t len)
Write data to a vector in internal representation.

Write data from the array b to the vector mv (stored in internal representation with modulus p). Here len is the
number of rows to be read starting at row i. Each row consists of 32 entries.

Here p must be a legal modulus.
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void mm_aux_read_mmv24(uint32_t p, uint_mmv_t *mv, uint32_t i, uint8_t *b, uint32_t len)
Read rows of length 24 from vector in internal representation.

Read entries of vector mv with modulus p and store these entries in the array b, , starting at row i. Here mv is a
vector of rows of 24 entries, with 8 entries slack after each row. len is the number of such rows to be read. So
altogether 24 * len entries are read from mv and written to array b; the 8 bytes slack after each 24-byte row are
dropped. Vector b is reduced modulo p.

Here p must be a legal modulus.

void mm_aux_write_mmv24(uint32_t p, uint8_t *b, uint_mmv_t *mv, uint32_t i, uint32_t len)
Write rows of length 24 to vector in internal representation.

Write data from the array b to the vector mvwith modulus p. We take 24 * len bytes from the array b and write
them to the vector mv, starting at row i. Here mv is considered as a vector of rows of 24 entries, with 8 entries
slack after each row; so len is the number of such 24-byte rows to be written. The entries in the slack after each
row written to mv are set to zero.

Here p must be a legal modulus.

uint32_t mm_aux_mmv_size(uint32_t p)
Return the size of a vector in internal representation.

The function returns the number of integers of type uint_mmv_t required to store a vector of the representation
𝜌𝑝 (in internal representation) with modulus p.

The function returns 0 if p is illegal modulus.

uint32_t mm_aux_int_fields(uint32_t p)
Return number of entries stored in integer of type uint_mmv_t

The function returns the number of entries of a vector of the representation 𝜌𝑝 (in internal representation) that
can be stored in an integer of type uint_mmv_t.

The function returns 0 if p is illegal modulus.

uint32_t mm_aux_v24_ints(uint32_t p)
Return number of integers of type uint_mmv_t to store 24 entries.

The function returns the number of integers of type uint_mmv_t required to store a part of 24 entries of a vector
of the representation 𝜌𝑝 (in internal representation) with modulus p. Such parts of 24 entries arise naturally in
the construction of 𝜌𝑝.

The function returns 0 if p is illegal modulus.

void mm_aux_zero_mmv(uint32_t p, uint_mmv_t *mv)
Zero a vector in internal representation.

The function sets all entries of the vector mv with modulus p in internal representation to zero.

void mm_aux_random_mmv(uint32_t p, uint_mmv_t *mv, uint64_t *seed)
Randomize a vector in internal representation.

The function randomizes all entries of the vector mv with modulus p in internal representation uniformly using
the internal random generator in file gen_random.c. Parameter seed must be a seed for a random generator as
described in file gen_random.c.

int32_t mm_aux_reduce_mmv(uint32_t p, uint_mmv_t *mv)
Reduce a vector in internal representation.

The function reduces all entries of the vector mv with modulus p in internal representation to a standard form, so
that equal vectors are represented by equal arrays of integers.
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Note that a zero entry in such a vector can be represented either by the bit string 0...0 or by 1...1. This
functions sets all zero entries of the vector to 0...0.

The function returns 0 if it detects no error. It may return the following error codes:

-1: Bad modulus p

-2: A one bit outside a valid bit field for an entry has been found

int32_t mm_aux_reduce_mmv_fields(uint32_t p, uint_mmv_t *mv, uint32_t nfields)
Auxiliary function of function mm_aux_reduce_mmv

The function performs the same operation as function mm_aux_reduce_mmv. But instead of all entries of the
vector mv, it reduces the first len entries only.

int32_t mm_aux_check_mmv(uint32_t p, uint_mmv_t *mv)
Check a vector in internal representation for errors.

The function checks all entries of the vector mv with modulus p in internal representation for errors. It returns 0
if it detects no error. It may return the following error codes:

-1: Bad modulus p

-2: A one bit outside a valid bit field for an entry has been found

-3: A subfield of 24 entries has an illegal nonzero entry at index >= 24

-4: The vector has an illegal nonzero diagonal entry

-5: The symmetric part of the vector is not actually symmetric

As a side effect, mv is reduced with function mm_aux_reduce_mmv.

void mm_aux_small24_expand(uint8_t *b_src, uint8_t *b_dest)
Convert part of vector from external to internal representation.

Conversion between the internal and the external representation of a vector is straightforward, except for entries
with tags A, B, C. The entries with these tags are stored in the first 852 entries of the external representation. In
the internal representation the entries with these tags are spread over three symmetric 24 times 24 times matrices.

This function maps the 852 entries of the array b_src (corresponding to tags A, B, C) to the array b_dest of
size 3 * 24 * 24 (corresponding to three symmetric 24 times 24 times matrices). Function mm_aux_write_mmv24
can be used to write the data from the array b_dest to the initial segment of the internal representation of a vector.

void mm_aux_small24_compress(uint8_t *b_src, uint8_t *b_dest)
Convert part of vector from internal to external representation.

Conversion between the internal and the external representation of a vector is straightforward, except for entries
with tags A, B, C. The entries with these tags are stored in the first 852 entries of the external representation. In
the internal representation the entries with these tags are spread over three symmetric 24 times 24 times matrices.

This function maps the 3 * 24 * 24 entries of the array b_src (corresponding to three symmetric 24 times 24 times
matrices) to the 852 entries of the array b_dest (corresponding to tags A, B, C in external representation).

This reverses the effect of function mm_aux_small24_expand. Function mm_aux_read_mmv24 can be used to
read the data from the initial segment of the internal representation of a vector to the array b_src, before calling
this function.

void mm_aux_mmv_to_bytes(uint32_t p, uint_mmv_t *mv, uint8_t *b)
Convert vector from internal to external representation.

Read all entries of vector mv (stored in internal representation with modulus p) and store these entries in the array
b in external representation.
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Output vector b is reduced modulo p. It must have length 196884.

void mm_aux_bytes_to_mmv(uint32_t p, uint8_t *b, uint_mmv_t *mv)
Convert vector from external to internal representation.

Read all entries of the array `b (of length 196884, containing a vector in external representation) and store these
entries the vector mv. Here mv is a vector stored in internal representation with modulus p.

Any entry x in the array bmust satisfy 0 <= x <= p. The vector mv is an array of n integers of type uint_mmv_t
with n = mm_aux_mmv_size(p).

int32_t mm_aux_mmv_to_sparse(uint32_t p, uint_mmv_t *mv, uint32_t *sp)
Convert vector from internal to sparse representation.

Read all entries of vector mv (stored in internal representation with modulus p) and store these entries in the array
sp in sparse representation. Each entry in the array sp represents a nonzero entry of the vector. The function
returns the length of the output array sp or an negative value in case of error. Negative return values are as in
function check_mmv_buffer.

Output vector sp is reduced modulo p. The buffer for array sp must have length 196884. Input vector mv is
checked with function check_mmv_buffer.

void mm_aux_mmv_extract_sparse(uint32_t p, uint_mmv_t *mv, uint32_t *sp, uint32_t length)
Extract entries from a vector in internal representation.

The function extracts certain entries from the vector mv depending on the vector sp. Here mv is a vector stored
in internal representation with modulus p. Vector sp is a vector of length length in sparse representation.

The entries of vector sp are updated with the corresponding entries of mv. If sp has an entry with a certain label
then the coordinate of that entry is set to the corresponding coordinate of vector mv. If several entries of sp have
the same label then the same coordinate is taken from mv several times.

Bit 7,. . . ,0 of any entry of sp should be either 0 or p. If that value is 0 then the coordinate is read to bits 7,. . . ,0
of that entry. If that entry is p then the negative coordinate is read instead. Other values of these bits are strongly
discouraged; but technically we XOR the corresponding coordinate of vector mv to these bits; and we then change
a result p to zero. There is a special case where this detail is relevant.

uint32_t mm_aux_mmv_get_sparse(uint32_t p, uint_mmv_t *mv, uint32_t sp)
Extract one entry of a vector in internal representation.

The statement uint32_t sp1 = mm_aux_mmv_get_sparse(p, mv, sp); is equivalent to

uint32_t sp1 = sp; mm_aux_mmv_extract_sparse(p, mv, &sp1, 1);

void mm_aux_mmv_add_sparse(uint32_t p, uint32_t *sp, uint32_t length, uint_mmv_t *mv)
Add vector in sparse rep to vector in internal representation.

The function adds a vector sp in sparse representation to a vector mv in internal representation with modulus p.
Vector sp has length length, and each value x in an entry of vector sp must satisfy 0 <= x <= p. Different
entries in sp with the same index are added up.

void mm_aux_mmv_set_sparse(uint32_t p, uint_mmv_t *mv, uint32_t *sp, uint32_t length)
Set certain entries of a vector in internal representation.

The function sets certain entries of the vector mv depending on the vector sp. Vector mv is given in internal
representation with modulus p. Vector sp is given in sparse representation and has length length.

If sp has an entry with a certain label then the corresponding entry of mv is set to to the value coded in that
entry of sp. Each of these values x must satisfy 0 <= x <= p. Duplicate entries in sp with the same label and
different values are illegal; in that case the value of mv is undefined.
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int32_t mm_aux_mmv_extract_sparse_signs(uint32_t p, uint_mmv_t *mv, uint32_t *sp, uint32_t n)
Extract signs of a vector in internal representation.

The function extracts the signs of certain entries of the vector mv depending on the vector sp. Vector mv is given
in internal representation with modulus p. Vector sp is given in sparse representation and has length n.

Entry sp[i] specifies a multiple c[i] * u[i] of a unit vector u[i]. Let m[i] be the coordinate of vector mv
with respect to the unit vector u[i]. We put s[i] = 0 if m[i] = c[i] and s[i] = 1 if m[i] = -c[i]. In
all other cases we assign a random value 0 or 1 to s[i]. Then the function returns the sum of the values s[i]
<< i, where i ranges from 0 to n - 1.

int32_t mm_aux_mmv_extract_x_signs(uint32_t p, uint_mmv_t *mv, uint64_t *elem, uint32_t *a, uint32_t n)
Extract some bits of a vector in internal representation.

The function extracts the least significant bits of certain entries of the vector mv depending on the vector a. Vector
mv is given in internal representation of the Monster with modulus p.

Vector a is a an array of n elements of the group Q_x0 of structure 21+24, with each element given in Leech
lattice encoding. Here each element of Q_x0 must correspond to a Leech lattice vector of type 2; otherwise the
function fails.

The array elem represents an element of the group G_x0 of structure 21+24.Co1, given in G_x0 representation.
Internally, the function transforms (i.e. conjugates) all elements of Q_x0 in the array a with the element elem,
i.e. it calculates the element a'[i] = elem^-1 * a[i] * elem of Q_x0. Then it extracts the least significant
bit b[i] of the entry of the vector mv with the coordinate labelled by a'[i].

Note that negating a'[i] corresponds to negating the coordinate with label a'[i] in the vector mv. Hence when
negating a'[i] we also have to flip the bit b[i]. The function fails in case a'[i] = 0.

The function returns the sum of the values b[i] << i, where i ranges from 0 to n - 1. The function also fails
in case i > 31. It returns a negative value in case of failure.

Assume that a vector mv' = mv * q * g is given with a known vector mv, a known g in G_x0, and an unknown
q in Q_x0. Then the main use case of this function is to find the element q (up to sign) without modifying mv'.

int32_t mm_aux_mul_sparse(uint32_t p, uint32_t *sp, uint32_t length, int64_t f, uint32_t p1, uint32_t *sp1)
Scalar multiplication and modular reduction in sparse representation.

The function multiplies a vector sp in sparse representation with a factor f and reduces the result modulo a
number p1.

The vector sp has length length and is stored in sparse representation as a vector modulo an odd number 2 <
p < 256. The result is reduced modulo the number p1 and stored in sparse representation in the array sp1.

The number p1must be odd and satisfy 2 < p < 256. In case f != 0 the number p1must divide p * abs(f).

The function returns the length of the array sp1 in case of success and -1 in case of failure.

The two arrays sp and sp1 may be non overlapping or equal.

int32_t mm_aux_get_mmv_leech2(uint32_t p, uint_mmv_t *mv, uint32_t v2)
Read entry from vector in internal rep indexed by Leech lattice.

The function returns the entry with index i of the vector mv with modulus p. Here i must be an index referring
to a vector of type 2 in the Leech lattice modulo 2 in Leech lattice encoding. The sign bit 24 of i is evaluated
as expected. The return value is reduced modulo p.

The function returns a negative value if i is not a vector of type 2 in the Leech lattice modulo 2 or p is not a legal
modulus.
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uint64_t mm_aux_hash(uint32_t p, uint_mmv_t *mv)
Compute hash value of vector in internal.

The function returns a hash value of the vector mv with modulus p. It also tries to distinguish between different
sparse vectors. Therefore it tries to hash over about 100 nonzero integers of type uint_mmv_t. So if mv is sparse
then the function might have to scan considerably more zero entries.

3.5.6 C interface for file mm_tables.c

File mm_tables.c contains functions for supporting the operations 𝑥𝜖𝑥𝜋 and 𝑦𝑓𝑥𝑒𝑥𝜖 on the vectors of the 198884-
dimesional represention 𝜌𝑝 modulo a small number 𝑝. These operations are implemented in separate packages for the
differnet values of 𝑝. But there are commom preprocessing steps required for all values 𝑝. These common preprocessing
steps are implemented here.

The monomial operations 𝑥𝜖, 𝑥𝜋, 𝑦𝑓 , 𝑥𝑒 are as defined in the API Reference, section The monster group. Here 𝜖 is
an element of the Golay cocode represented as a 12-bit integer. 𝑓 and 𝑒 are elements of the Parker loop represented as
13-bit integers. 𝜋 is a automorphism of the Parker loop. In the API Reference, section Automorphisms of the Parker
loop we number a certain set of these automorphisms in the same way as the elements of the Mathieu group 𝑀24. We
denote such an automorphism 𝜋 by its number.

Functions

void mm_sub_prep_pi(uint32_t eps, uint32_t pi, mm_sub_op_pi_type *p_op)
Compute information for operation 𝑥𝜖𝑥𝜋 .

Given an element 𝑥𝜖𝑥𝜋 of the monster by parameters eps and pi, the function computes the relevant data for
performing that operation on the representation of the monster. These data are stored in the structure of type
mm_sub_op_pi_type referred by parameter p_op.

Caution:

Component p_op->tbl_perm64 must be initialized with an array of type mm_sub_op_pi64_type
a_tbl_perm64[759] befor aclling this function!!!.

int32_t mm_sub_test_prep_pi_64(uint32_t eps, uint32_t pi, uint32_t *p_tbl)
For internal use only!

This is an auxiliary function for testing function mm_sub_prep_pi.

Given eps and pi as in function mm_sub_prep_pi, this function executes function mm_sub_prep_p(eps, pi,
p_op) and stores the output p_op->tbl_perm64 (as an array of length 759 * (1 + 6)) in the array referred by
p_tbl.

void mm_sub_prep_xy(uint32_t f, uint32_t e, uint32_t eps, mm_sub_op_xy_type *p_op)
Compute information for operation 𝑦𝑓𝑥𝑒𝑥𝜖.

Given an element 𝑦𝑓𝑥𝑒𝑥𝜖 of the monster by parameters f, e, and eps, the function computes the relevant data
for performing that operation on the representation of the monster. These data are stored in the structure of type
mm_sub_op_xy_type referred by parameter p_op.

Caution!

Component p_op->sign_XYZmust either be NULL or refer to an array of type uint8_t of length 2048. Com-
ponent p_op->s_T must either be NULL or refer to an array of type uint8_t of length 759.
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3.5.7 C interface for file mm_op_p_vector.c

File mm_op_p_vector.c implements the operation of the Monster group on a vector in the representation 𝜌𝑝 of the
Monster modulo 𝑝.

The representation 𝜌𝑝 is equal to the 196884-dimensional representation 𝜌 of the monster, with coefficients taken
modulo 𝑝, as defined in section The representation of the monster group in the API reference.

Unless otherwise stated, the first parameter of a function in this module is the modulus 𝑝, and that modulus must be
one of the values 3, 7, 15, 31, 127, or 255.

An element of 𝜌𝑝 is implemented as an array of integers of type uint_mmv_t as described in section Description of
the mmgroup.mm extension in this document.

The number of entries of a vector of type uint_mmv_t[] for modulus 𝑝 is equal to mm_aux_mmv_size(p).

Functions

int32_t mm_op_copy(uint32_t p, uint_mmv_t *mv1, uint_mmv_t *mv2)
Copy vector mv1 in 𝜌𝑝 to mv2

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_compare_len(uint32_t p, uint_mmv_t *mv1, uint_mmv_t *mv2, uint32_t len)
Compare arrays mv1 and mv2 of integers.

The function compares parts of the two vectors mv1 and mv2of the representation 𝜌𝑝.

Here the function compares len integers of type uint_mmv_t starting at the pointers mv1 and mv2. These
integers are interpreted as arrays of bit fields containing integers modulo p.

The function returns 0 in case of equality and 1 otherwise.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_compare(uint32_t p, uint_mmv_t *mv1, uint_mmv_t *mv2)
Compare vectors mv1 and mv2 of 𝜌𝑝.

The function compares two vectors mv1 and mv2 of the representation 𝜌𝑝.

It returns 0 in case of equality and 1 otherwise.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_checkzero(uint32_t p, uint_mmv_t *mv)
Check if a vector mv in 𝜌𝑝 is zero.

The function checks it the vector mv in the representation 𝜌𝑝 is zero.

It returns 0 in case mv == 0 and 1 otherwise. It is optimized for the case that mv is expected to be zero.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_vector_add(uint32_t p, uint_mmv_t *mv1, uint_mmv_t *mv2)
Add vectors mv1 and mv2 of 𝜌𝑝.

The function adds the two vectors mv1 and mv2 of the representation 𝜌𝑝 and stores the result in the vector mv1.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.
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int32_t mm_op_scalar_mul(uint32_t p, int32_t factor, uint_mmv_t *mv1)
Multiply vector mv1 of 𝜌𝑝 with scalar.

The function multiplies the vector mv1 of the representation 𝜌𝑝 and with the (signed) integer factor and stores
the result in the vector mv1.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_compare_mod_q(uint32_t p, uint_mmv_t *mv1, uint_mmv_t *mv2, uint32_t q)
Compare two vectors of 𝜌𝑝 modulo 𝑞.

The function compares two vectors mv1 and mv2 of the representation 𝜌𝑝 modulo a number 𝑞. Here 𝑞 should
divide 𝑝.

It returns 0 in case of equality, 1 in case of inequality, and 2 if 𝑞 does not divide 𝑝.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_store_axis(uint32_t p, uint32_t x, uint_mmv_t *mv)
Set a vector in 𝜌𝑝 to an axis.

Let x be an element of the subgroup 𝑄𝑥0 if the Monster that maps to a short Leech lattice vector. Here x
must be given in Leech lattice encoding as in the Description of the mmgroup.generators extension in the
documentation of the C interface.

Then x corresponds to vector in 𝜌𝑝 that is called a 2A axis. The function stores that 2A axis in mv.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_pi(uint32_t p, uint_mmv_t *v_in, uint32_t delta, uint32_t pi, uint_mmv_t *v_out)
Compute automophism of the Parker loop on a vector.

File mm_op_pi.c implements the operation of the generators 𝑥𝜋 and 𝑥𝛿 of the monster group on a vector in the
representation 𝜌𝑝 of the Monster modulo p. Here p must be 3, 7, 15, 31, 127, or 255.

Here generators 𝑥𝜋 and 𝑥𝛿 are defined as automorphisms of the Parker loop as in section The monster group
of the API reference. An automophism of the Parker loop is specified by a pair of integers d, pi as in the
constructor of the Python class AutPL, see section Automophisms of the Parker loop in the API reference.

The exact operation of an automorphism of the Parker loop on 𝜌 is as defined in [Seysen19].

Note that the integers d, pi mentioned above describe the number of an element of the Golay cocode and the
number of a permutation in the Mathieu group 𝑀24, respectively. Internally, we use the C functions in file
mat24_functions.c and the function mm_sub_prep_pi in file mm_tables.c for converting the integers d,
pi to mathematical objects that can be used for implementing the operation on 𝜌𝑝. These conversions are very
fast compared to the cost for the operation on 𝜌𝑝. This helps us to keep the C interface for these operations
simple.

Let v_in be a vector of the representation 𝜌𝑝 of the monster group. Then the function computes this auto-
morphism on the input vector v_in and stores the result in the output vector v_out. Input vector v_in is not
changed.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_xy(uint32_t p, uint_mmv_t *v_in, uint32_t f, uint32_t e, uint32_t eps, uint_mmv_t *v_out)
Compute an operation of the monster group on a vector.

Let v_in be a vector of the representation 𝜌𝑝 of the monster group.

The function implements the operation of the element 𝑦𝑓 · 𝑥𝑒 · 𝑥𝜖 of the monster group on a vector v_in in the
representation 𝜌𝑝 of the monster.
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The integers f and e occuring in the generators 𝑦𝑓 and 𝑥𝑒 encode elements of the Parker loop. The integer eps
encodes the element 𝜖 of the Golay cocode occuring in the generator 𝑥𝜖, as indicated in the header of this file.
The function computes this operation of the element of the monster (given by parameters f, e, eps) on the
input vector v_in and stores the result in the output vector v_out.

Input vector v_in is not changed.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_omega(uint32_t p, uint_mmv_t *v, uint32_t d)
Compute an operation of the monster group on a vector.

Let v be a vector of the representation 𝜌𝑝 of the monster group.

The function implements the operation of the element 𝑥𝑑 of the monster group on a vector v in the representation
𝜌𝑝 of the monster. Here d must be one of the integers 0, 0x800, 0x1000, or 0x1800, encoding the generators
𝑥1, 𝑥Ω, 𝑥−1, or 𝑥−Ω, respectively.

The function computes the operation 𝑥𝑑 on the vector v and overwrites the vector v with the result. The function
can be considered as a simplified (and much faster) version of function mm_op_xy.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_t_A(uint32_t p, uint_mmv_t *v_in, uint32_t e, uint_mmv_t *v_out)
Compute part A of operation of 𝜏𝑒 on vector``.

Function mm_op_t_A computes a the operation of the monster group element 𝜏𝑒 on a vector v_in and stores the
A part of the result in a vector v_out. That operation depends on a parameter e. The other entries of vector
v_out are not changed. See section The representation of the monster group in the API reference for tags
of entries of a vector in the representation of the monster. Note that the entries of vector v_out with tag A also
depend on entries of vector v_in with tags different from A.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_word(uint32_t p, uint_mmv_t *v, uint32_t *g, int32_t len_g, int32_t e, uint_mmv_t *work)
Compute operation of the monster group on a vector.

Let 𝑣 be a vector of the representation 𝜌𝑝 of the monster group stored in the array referred by v.

Let 𝑔 be the element of the monster group stored in the array of length len_g referred by the pointer g.

Then the function computes the vector 𝑣 · 𝑔𝑒 and overwrites the vector in the array v with that vector. Here 𝑒 is
the exponent given by the integer e.

The function requires a work buffer (referrd by work), which is an array of mm_aux_mmv_size(p) entries of
type uint_mmv_t. So the work buffer has the same size as the vector v.

The function returns 0 in case of success and a nonzero value in case of failure.

Internally, the function simplifies all substrings of the string representing the word 𝑔𝑒, except for atoms corre-
sponding to nonzero powers of the generator 𝜉. So the user need not ‘optimize’ the input 𝑔. Of course, this
simplification does not change the input array g.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_word_tag_A(uint32_t p, uint_mmv_t *v, uint32_t *g, int32_t len_g, int32_t e)
Restriction of function mm_op_word to tag A

Function mm_op_word computes the operation of an element ℎ = 𝑔𝑒 of the monster group a vector v and
overwrites v with the result of that operation. ℎ depends on parameters g, len_g, and e of this function.

Function mm_op_word_tag_A computes the same automorphism on the entries of the vector v with tag A only,
and ignores the other entries of v. See section The representation of the monster group in the API reference
for tags of entries of a vector in the representation of the monster.
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The function overwrites the vector v with the result. Here only entries of v with tag A are changed.

Parameters and return value are the same as in function mm_op_word, except that a work buffer is not required
here. Also, the function fails and returns a nonzero value, if the word that makes up the group element ℎ contains
any nonzero powers of the generator 𝜏 of the monster group. Note that such a power of 𝜏 does not fix the the
part of the vector v with tag A. Powers of the generator 𝜏 correspond to atoms with tag t.

This function is much faster than function mm_op_word. Array vmust have 24 * mm_aux_v24_ints(p) entries
of type uint_mmv_t.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_word_ABC(uint32_t p, uint_mmv_t *v, uint32_t *g, int32_t len_g, uint_mmv_t *v_out)
Compute ABC part of the operation of the monster group on a vector.

Let 𝑣 be a vector of the representation 𝜌𝑝 of the monster group stored in the array referred by v.

Let 𝑔 be the element of the monster group stored in the array of length len_g referred by the pointer g. Here 𝑔,
and also all prefixes of the word representing 𝑔, must be in the set 𝐺𝑥0 ·𝑁0.

The function computes the parts with tags A, B, and C of the vector 𝑣·𝑔 and stores the result in the array v_out. The
other parts of the vector 𝑣 · 𝑔 are not computed. Here the array v_out must have 72 * mm_aux_v24_ints(p)
entries of type uint_mmv_t.

This function is much faster than function mm_op_word. It is mainly used for dealing with a 2A axis 𝑣.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

int32_t mm_op_scalprod(uint32_t p, uint_mmv_t *v1, uint_mmv_t *v2)
Compute the scalar product of two vectors.

Let 𝑣1, 𝑣2 be vectors of the representation 𝜌𝑝 of the monster group stored in the array referred by v1, v2.

The function returns the scalar product (𝑣1, 𝑣2) (reduced modulo 𝑝) in case of success and a negative value in
case of failure.

Here modulus p must be one of the values 3, 7, 15, 31, 127, or 255.

Variables

const uint8_t MM_OP_P_TABLE[] = {0x03, 0x07, 0x0f, 0x1f, 0x7f, 0xff, 0x00}
Table of legal moduli p, terminted by zero.

3.5.8 C interface for file mm_op_p_axis.c

File mm_op_p_axis.c implements the operation of the Monster group on a vector in the representation 𝜌𝑝 of the
Monster modulo 𝑝. In this module such a vector is usually a 2A axis.

The representation 𝜌𝑝 is equal to the 196884-dimensional representation 𝜌 of the monster, with coefficients taken
modulo 𝑝, as defined in section The representation of the monster group in the API reference.

The first parameter of a function in this module is the modulus 𝑝, and that modulus must be one of the values specified
in the function.

An element of 𝜌𝑝 is implemented as an array of integers of type uint_mmv_t as described in section Description of
the mmgroup.mm extension in this document.

The number of entries of a vector of type uint_mmv_t[] for modulus 𝑝 is equal to mm_aux_mmv_size(p).
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Functions

int32_t mm_op_load_leech3matrix(uint32_t p, uint_mmv_t *v, uint64_t *a)
Load the ‘A’ part of a vector of the representation of the monster.

The function loads the part of with tag ‘A’ of a vector v of the representation of the monster modulo p to the matrix
a. Here matrix awill be given in matrix mod 3 encoding as documented in the header of file leech3matrix.c.

Here modulus p must be one of the values 3, or 15.

int64_t mm_op_eval_A_rank_mod3(uint32_t p, uint_mmv_t *v, uint32_t d)
Rank of ‘A’ part of a vector of the representation of the monster.

Let a be the symmetric 24 times matrix corresponding to the part with tag ‘A’ of a input vector v in the repre-
sentation of the monster modulo p. Let b = a - d * 1, for an integer input d, where 1 is the unit matrix.

Let r be the rank of matrix b with entries taken modulo 3. If matrix b has rank 23 then its kernel is one di-
mensional. In that case the kernel contains two nonzero vectors +-w, and we define w to be one of these vectors.
Otherwise we let w be the zero vector.

The function returns the value (r << 48) + w, with w the vector defined above given in Leech lattice mod 3
encoding as described in The C interface of the mmgroup project.

The number of entries of parameter v for modulus 𝑝 is equal to 24 * mm_aux_int_fields(p).

Here modulus p must be 3, or 15.

int32_t mm_op_eval_A_aux(uint32_t p, uint_mmv_t *v, uint32_t m_and, uint32_t m_xor, uint32_t row)
Auxiliary function for mm_op_eval_A

Let matrix A be the part with tag ‘A’ of a vector v of the representation of the monster modulo p}.

Let m_and[i] and m_xor[i] be the bit i of m_and and m_xor, respectively. Define a vector y = (y[0],...
,y[23]) by: y[i] = m_and[i] * (-1)**m_xor[i].

If row >= 24 the function returns res = y * A * transpose(y) (modulo p). We have 0 < res <
0x8000, but res is not reduced modulo p.

In case row < 24 define the vector z by z[i] = y[i] if i = row and z[i] = 0 otherwise. Put zz = z * A
* transpose(y) (modulo p). We have 0 < res < 0x8000, but res is not reduced modulo p.

Here modulus p must be 3, or 15.

int32_t mm_op_eval_A(uint32_t p, uint_mmv_t *v, uint32_t v2)
Evaluate A part in rep of monster at a short Leech vector.

Let v be a vector in the 196884-dimensional representation of the monster group modulo p, encoded as described
in section Description of the mmgroup.mm<p> extensions in the description of the C interface. The entries
corresponding to tag ‘A’ of v form a symmetric 24 times 24 matrix 𝐴.

Let 𝑣2 be a short Leech lattice vector given by parameter v2, encoded as a vector in the Leech lattice modulo 2.
Then 𝑣2 is determined up to sign and 𝑣2𝐴𝑣⊤2 is determined uniquely.

The function returns 𝑟 = 𝑣2𝐴𝑣⊤2 modulo p, with 0 ≤ 𝑟 < 𝑝 in case of success. It returns -1 if 𝑣2 is not short
(i.e. not of type 2).

The short Leech lattice vector 𝑣2 (of norm 4) is scaled to norm 32 as usual, when 𝑣2 is given in integer coordinates.

Here modulus p must be 3, or 15.
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int32_t mm_op_norm_A(uint32_t p, uint_mmv_t *v)
Compute norm of the ‘A’ part of a vector in the rep of the monster.

Assume that v is a vector in the representation of the monster modulo p. Then the part of v with tag ‘A’ is
considered as a symmetric 24 times 24 matrix. The function returns the norm (i.e. the sum of the squares of the
entries) of that matrix.

Here modulus p must be 3, or 15.

int32_t mm_op_watermark_A(uint32_t p, uint_mmv_t *v, uint32_t *w)
Watermark ‘A’ part of a vector of the representation of the monster.

Let matrix A be the part with tag ‘A’ of a vector v of the representation of the monster modulo p.

Then we watermark 24 the rows of matrix A. For each of the rows A[i], 0 <= i < 24we compute a watermark
w(i) in the array w. Note that the watermark w(i) contains an information about the marked row i in its lower
bits. We store the sorted array of these watermarks in the array w of length

a. If all these watermarks (ignoring the information about the row) are different, we can easily recognize a
permutation of the rows of matrix A by comparing the watermark of matrix A with the watermark of the
permuted matrix A.

The watermark w[i] depends on the distribution of the absolute values of the entries w[i, j] (modulo p) of
row i. Thus permutations of the columns and sign changes in the matrix do not affect these watermarks.

The function returns 0 in case of success and a negative value in case of error.

When working in the representation modulo p = 3we fail unless at least nine rows of A have a unique watermark.
This is sufficient for reconstructing a permutation in the Mathieu group.

In the other cases the watermark of row 𝑖 is equal to 𝑖+32·𝑆(𝐴, 𝑖). Here 𝑆(𝐴, 𝑖) depends on the entries of matrix
A. The value 𝑆(𝐴, 𝑖) it is invariant under sign changes of any off-diagonal elements of A. It is also invariant under
any permutation of the symmetric matrix A fixing row and column 𝑖.

We assert that watermarking A + k*I succeeds if and only if watermarking A succeeds, for any multiple k*I of
the unit matrix.

Here modulus p must be 3, or 15.

int32_t mm_op_watermark_A_perm_num(uint32_t p, uint32_t *w, uint_mmv_t *v)
Compute permutation from watermarks of matrices.

Let matrix A be the part with tag ‘A’ of a vector v of the representation of the monster modulo p. Let w be the
watermark of another matrix A' which is obtained from A by permutations of the rows and columns, and by sign
changes. Here the watermark w must have been computed by function mm_op_watermark_A.

Then the function watermarks matrix A and computes a permutation that maps A' to A. If that permutation
is in the Mathieu group 𝑀24 then the function returns the number of that permutation, as given by function
mat24_perm_to_m24num in file mat24_functions.c.

The function returns a nonegative permutation number in case of success and a negative value in case of error.

If all watermarks in the array w (ignoring the information about the row in the lower 5 bits) are different then
there is at most one permutation that maps A' to A. If that permutation is in 𝑀24 then the function returns the
number of that permutation. In all other cases the function fails.

In case p = 3 we succeed already if the first 9 watermarks in the array w are different. Then there is at most one
permutation in 𝑀24 that maps A' to A.

Here modulus p must be 3, or 15.
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int32_t mm_op_eval_X_find_abs(uint32_t p, uint_mmv_t *v, uint32_t *p_out, uint32_t n, uint32_t y0, uint32_t
y1)

Find certain entries of a vector of the monster rep modulo %p

Let v be a vector of the monster group representation modulo %p. The function tries to find all entries of the
monomial part of v with absolute values y0 and y1, 1 <= y0, y1 <= p / 2. In case y1 = 0 entries with
value y1 are ignored.

Here the monomial part of v consists of the entries with tags ‘B’, ‘C’, ‘T’, ‘X’. The coordinates of these entries
correspond to the short vectors of the Leech lattice.

Output is written into the array p_out of length n. If the monomial part of v contains an entry with absolute
value y0 then the coordinate of that entry is written into array p_out in Leech lattice encoding. If that part of
v contains an entry with absolute value y1 then the coordinate of that entry is witten into that array in the same
encoding.

In addition, for entries in v with absolute value y1 the bit 24 of the corresponding entry in p_out is set. In
p_out, the entries with absolute value y1 are stored after those with absolute value y0. Entries with the same
absolute value are stored in the same order as in v.

The function returns the number of valid entries in the array p_out. If the length n of p_out is too small then
some entries will be dropped without notice.

Here modulus p must be 15.

int32_t mm_op_eval_X_count_abs(uint32_t p, uint_mmv_t *v, uint32_t *p_out)
Count certain entries of a vector of the monster rep modulo p

Let v be a vector of the monster group representation modulo p. The function counts the absolute values of all
entries of the monomial part of v.

Here the monomial part of v consists of the entries with tags ‘B’, ‘C’, ‘T’, ‘X’. The coordinates of these entries
correspond to the short vectors of the Leech lattice.

Output is written into the array p_out of length p/2 + 1. Entry p_out[i] contains the number if entries of the
monomial part of v with absolute value i for 0 <= i <= p/2 + 1.

Here modulus p must be 15.

The function returns 0.

3.5.9 Internal operation

The source code for the functions in modules mm_aux.c and mm_tables.c is located in subdirectory src/mmgroup/
dev/mm_basics. The code generation process genrates .c files from the source files with extension .ske in that
subdirectory. Protoypes for the functions in these .c files can be found in file mm_basics.h.

The source code for the functions in modules mm_op_p_vector.c and mm_op_p_axis.c is located in subdirectory
src/mmgroup/dev/mm_op. The code generation process genrates .c files from the source files with extension .ske
in that subdirectory. Protoypes for the functions in these files can be found in file mm_o_p.h.

The code gerneration process for C files derived from the source files in the src/mmgroup/dev/mm_basics directory
is straightforward. In the remainder of this subsection we describe the code gerneration process for files derived form
sources in the src/mmgroup/dev/mm_op directory.

For reasons of efficiency a dedicated set of .c files is generated from the .ske```files in the ``src/mmgroup/
dev/mm_op directory for each modulus p supported. Here corresponding .c files for different moduli are generated
from the same source file with extension .ske. The .c functions in modulea mm_op_p_vector.c and mm_op_p_axis.
c``contain automatically-generated ``case statements that call the working functions for the appropriate
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modulus p. Any of these .c functions takes the modulus p as its first argument, and dispatches the work to the sub-
function dedicated to the appropriate modulus p.

E.g. the function mm_op_pi in module mm_op_p_vector.c` calls working functions ``mm3_op_pi,
mm7_op_pi, etc. in case p = 3, p = 7, etc., for doing the actual work in the representation of the Monster modulo
p. Such working functions are implemented in different .c files, with one .c file for each modulus. So the functions
mm3_op_pi and mm7_op_pi are implemented in the .c files mm3_op_pi.c and mm7_op_pi.c`, respectively. Here such
a .c file may implement several working functions for the same modules p.

All functions exported from file mm_op_p_vector.c support the same set of moduli p. Functions exported from file
mm_op_p_axis.c deal with 2A axes; the usually support moduli 3 and 15 (or just one of these two values) only; see
documentation of the corresponding functions.

So the process of switching to the appropriate function for a given modulus is completely invisible for Python and
Cython.

3.5.10 Basic table-providing classes for module mmgroup.mm_op

We describe the class MM_Basics and its subclass MM_Const

Class MM_Basics in module mmgroup.dev.mm_basics.mm_basics defines several constants that describe the or-
ganization of vectors of integers modulo 𝑝 used in the representation modulo 𝜌𝑝. Here several integers modulo 𝑝 are
stored in a single unsigned integer of type uint_mmv_t. Type uint_mmv_t is equal to the standard C integer type
uint64_t on a 64-bit system.

For a 32-bit system that type may be changed to uint32_t by adjusting the variable INT_BITS in this module, but this
has no longer been tested for several years.

Table 4: Constants used for generating representations of the monster

Name Value
FIELD_BITS Number of bits used to store an integer modulo P. This is the smallest power

of two greater than or equal to P_BITS.
INT_BITS Number of bits available in an unsigned integer of type uint_mmv_t. This

is equal to 64.
INT_FIELDS Number of integers modulo P that is stored in a variable of type uint_mmv_t.

INT_FIELDS is a power of two and equal to INT_BITS/FIELD_BITS.
LOG_FIELD_BITS Binary logarithm of the value FIELD_BITS.
LOG_INT_BITS Binary logarithm of the value INT_BITS.
LOG_INT_FIELDS Binary logarithm of the value INT_FIELDS.
LOG_V24_INTS Binary logarithm of the value V24_INTS.
LOG_V64_INTS Binary logarithm of the value V64_INTS.
MVV_ENTRIES Number of integers modulo P contained in a vector of the representation of

the monster, including unused entries.
MVV_INTS Number of integers of type uint_mmv_t required to store a vector of the

representation of the monster. This value depends on P.
P The modulus of the current representation being generated. P is equal to

2**P_BITS - 1.
P_BITS Bit length of modulus P.
V24_INTS Number of integers of type uint_mmv_t used up to store a vector of 24

integers modulo P. V24_INTS is always a power of two.
V64_INTS Number of integers of type uint_mmv_t used to store a vector of 64 integers

modulo P. V64_INTS is always a power of two.
V64_INTS_USED Number of integers of type uint_mmv_t actually used to store a vector of 24

integers modulo P. This may be less than V24_INTS.
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Class MM_Const in module mmgroup.dev.mm_basics.mm_basics is a table-providing class for the C functions used
by python extension mmgroup.mm. Most C functions in that module take the modulus p as a parameter. They need fast
access to the constants given in the table above for all legal values of p. Using the code generator with the tables and
directives provided by class MM_Const, we can easily obtain these values for any legal p as in the following example:

// Return a nonzero value if p is a bad modulus,
// i.e. not p = 2**k - 1 for some 2 <= k <= 8
#define mm_aux_bad_p(p) (((p) & ((p)+1)) | (((p)-3) & ((0UL-256UL))))

// Create a precomputed table containing the constants for modulus p
// %%USE_TABLE
static const uint32_t MMV_CONST_TABLE[] = {
// %%TABLE MMV_CONST_TAB, uint32
};

int do_something_for_modulus_p(uint 32_t p, ...)
{

uint32_t modulus_data, p_bits, field_bits;
// Reject any illegal modulus p
if (mm_aux_bad_p(p)) return -1;
// Load the constants for modulus p to variable modulus_data
// %%MMV_LOAD_CONST p, modulus_data;
// Load value P_BITS for modulus P to p_bits (using modulus_data)
p_bits = %{MMV_CONST:P_BITS,modulus_data};
// Load value FIELD_BITS for modulus P to field_bits
field_bits = %{MMV_CONST:FIELD_BITS,modulus_data};
// Now do the actual work of the function using these values
...

}

class mmgroup.dev.mm_basics.mm_basics.MM_Const(**kwds)
This is the basic table-providing class for module mmgroup.mm

The main purpose of this class is to provide the constants defined in class MM_Basics, for a variable
modulus ``p as shown in the example above.

This class provides the directive MMV_CONST_TAB for generating all tables, and the directive MMV_LOAD_CONST
for storing the table of constants, for a specific modulus p, in an integer variable. The string formatting function
MMV_CONST can be used for extracting a specific constant from that variable, as indicated in the example above.

Internally, we use a deBruijn sequence to translate the value p to an index for the table generated via the directive
MMV_CONST_TAB.

Constants not depending on the modulus p, such as INT_BITS, LOG_INT_BITS, and MMV_ENTRIES are available
as attributes of class MM_Const. They can also be coded with the code generator directly via string formatting,
e.g.:

uint_8_t a[%{MMV_ENTRIES}];

For a fixed modulus p the constants depending on p can also be coded with the code generator via string format-
ting, e.g.:

a >>= %{P_BITS:3};

That constant also availble in the form MM_Const().P_BITS(3).

Class MM_Const provides a string-formatting function shl which generates a shift expression Here:
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%{shl:expression, i}

generates an expression equivalent to ((expression) << i). Here i must be an integer. In case i < 0 we
generate ((expression) >> -i) instead. E.g. %{shl:'x',-3} evaluates to x >> 3.

Class MM_Const provides another string-formatting function smask which generates an integer constant to be
used as a bit mask for integers of type uint_mmv_t. Here:

%{smask:value, fields, width}

with integers value, fields, and width creates such a bit mask. For 0 <= i and 0 <= j < width, the bit
of that mask at position i * width + j is set if both, bit i of the integer fields and bit j of the integer value
are set. A bit in the mask at position INT_BITS or higher is never set.

Any of the arguments value and fieldsmay either be an integer or anything iterable that yields a list of integers.
Then this list is interpreted as a list of bit positions. A bit of that argument is set if its position occurs in that list
and cleared otherwise.

E.g. %{smask:3, [1,2], 4} evaluates to 0x330.

snippet(source, *args, **kwds)
Generate a C code snippet

This method calls function c_snippet in module mmgroup.generate_c to generate a C code snippet.
Parameters are as in function c_snippet. The method returns the generated C code snippet as a string.

In addition, all tables and directives available in the given instance of the table-providing class are also
passed as arguments to function c_snippet.

We describe the class MM_Op.

Class MM_Op in module mmgroup.dev.mm_op.mm_op is a table-providing class for the C functions used by python
extensions mmgroup.mm<p>. Each of these extensions implements the operation of monster group modulo a fixed
number p.

Class MM_Op provides the same functionality as class MM_Const in module mmgroup.dev.mm_basics.mm_basics.
Since modulus p is fixed in an instance of class MM_Op, all constants provided by the base class MM_Basics of MM_Op
and MM_Const (see table Constants used for generating representations of the monster) have fixed values. So they are
available as attributes of an instance of class MM_Op and they may also be used by the code generator directly via string
formatting.

The string formatting functions %{shl:expression,i} and %{smask:value, fields, width} work as in class
MM_Op. In addition, parameter fields defaults to -1 (i.e. the mask is set in all bit fields) and width defaults to the
constant FIELD_BITS. i.e. the number of bits used to store an integer modulo p. E.g. for p = 7 we have FIELD_BITS
= 4, and %{smask:1} evaluates to the 64-bit integer constant 0x1111111111111111.

Class MM_Op also provides the following directives:

MMV_ROTL src, count, dest

Rotate the bit fields of a variable of type uint_mmv_t

Here src is an integer of type uint_mmv_t which is interpreted as an array of bit fields, where each bit
field stores a number modulo p. Then each bit field is rotated left by count bits. This means that the
numbers in all bit fields are multiplied by 2**count. count must be an integer. It is reduced modulo the
bit length of p. So count may also be negative. The result of the rotation is written to the variable dest
which should also be of type uint_mmv_t. dest defaults to src.

MMV_UINT_SPREAD src, dest, value
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Spread bits of an integer src to the bit fields of dest. Here src may be any integer variable and dest
should be a variable of type uint_mmv_t. If bit i of the integer src is set then the i-th bit field of variable
dest is set to value; otherwise it is set to zero. valuemust be an integer with 0 <= value <= p; default
is p.

class mmgroup.dev.mm_op.mm_op.MM_Op(**kwds)
Supports basic operations on integers of type uint_mmv_t.

Here an integer of type uint_mmv_t is interpreted as an array of bit fields, where each bit field stores an integer
modulo p for a fixed number p. This class is similar to class MM_Const in module mmgroup.dev.mm_basics.
mm_basics, where the modulus p may be variable.

Usage of this class is documented in the module documentation.

Parameters
p (int) – This is the modulus 3 <= p < 256. p + 1 must be a power of two.

3.5.11 Deprecated stuff

In older versions of the mmgroup project the functionality of the mm_op extension was spread over several Cython
extensions with names mm, mm3, mm7, mm15, etc. There are now python modules emulating the functionality of these
deprecated extensions, which appear to work in Windows and Linux, but possibly not in macOS.

Note that the modules mmgroup.mm, mmgroup.mm3, mmgroup.mm7, etc., which emulate the old functionality, are also
deprecated. So the user is strongly discouraged from using these deprecated modules. He or she should use the mm_op
extension instead!

In older versions some python functions had to select the C function for the requested modulus, which has caused rather
nasty problemes in some cases.

In the mm_op extension each documented .c function has been wrapped by a Cython function with the same name and
the same signature. In the depreceated modules naming conventions are considerably more complicated.

3.6 Description of the mmgroup.mm_reduce extension

The functions in this module implement the fast reduction of an element of the monster group described in [Sey22].
There we define a triple of vector (𝑣1, 𝑣

+, 𝑣−) in the representation 𝜌15 such that an element 𝑔 of the monster van be
recognized from the triple (𝑣1 · 𝑔, 𝑣+ · 𝑔, 𝑣− · 𝑔). A precomputed vector 𝑣1 is stored in file mm_order_vector.c.
Module mm_order.c contains functions for computing the order of an element of the monster. Module mm_reduce.c
contains the function mm_reduce_M that implements the fast reduction algorithm in the monster group.

3.6.1 Generating an order vector

Python module mmgroup.dev.mm_reduce.find_order_vector

This module computes an order vector in a representation of the monster.

In [Sey22] we define a vector 𝑣1 in the representation 𝜌15 of the monster group M that is used for recognizing elements
of the subgroup 𝐺𝑥0 of M. Vector 𝑣1 is also used for computing the order of an element of M, so we call 𝑣1 an order
vector here.

𝑣1 is constructed from two vectors 𝑣71 ∈ 𝜌3 and 𝑣94 ∈ 𝜌5 via Chinese remaindering. This module contains functions
for computing vectors 𝑣71 and 𝑣94 with the properties required in [Sey22].
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These computations are the most time-consuming part of the computation of 𝑣1; and we use multiprocessing for per-
forming these computations.

All computations in the monster group are done with instances of class MM0, but not MM. The reason for this is that class
MM requires the existence of an order vector.

3.6.2 Header file mm_reduce.h

Yet to be documented

Typedefs

typedef struct gt_subword_s gt_subword_type
typedef for structure struct gt_subword_s

typedef struct gt_subword_buf_s gt_subword_buf_type
typedef for structure struct gt_subword_buf_s

struct mm_compress_type
#include <mm_reduce.h> Structure for storing an element of the Monster compactly.

A properly reduced element of the Monster stored in a structure of type gt_word_type may also be encoded in
this structure in a more compact form. This facilitates the conversion of that element to an integer, which is out
of the scope of this module.

This structure may store an element of the Monster as a word of generators of shape

𝑦𝑓 𝑥𝑑 𝑥𝛿 𝜋 𝑐1 𝜏1 𝑐2 𝜏1 𝑐3 𝜏3 . . . ,

where 𝑑, 𝑓 ∈ 𝒫, 𝛿 ∈ 𝒞*, and 𝜋 ∈ AutSt𝒫 . Here 𝜋 must correspond to a generator with tag p. See section
Implementation of the generators of the monster group in the API reference for details. 𝜏𝑖 is wqaul to generator
𝜏 or to its inverse.

A generator 𝑐𝑖 is an element of the group 𝐺𝑥0 referred by a 24-bit integer c_i. This must be one of the following:

If c_i represents a type-4 vector in Leech lattice encoding then this encodes the element of 𝐺𝑥0 computed by
applying the C function gen_leech2_reduce_type4 to c_i.

If c_i represents a type-2 vector in Leech lattice encoding then this encodes the element of 𝐺𝑥0 computed by
applying the C function gen_leech2_reduce_type2 to c_i.

The product 𝑦𝑓 𝑥𝑑 𝑥𝛿 𝜋 is encdoded in component nx, and the other generators are encdoded in the entries of
component w, as desribed in the procedures below.

For background see section Computations in the Leech lattice modulo 2 in The mmgroup guide for developers.
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Public Members

uint64_t nx
encoding of 𝑦𝑓 𝑥𝑑 𝑥𝛿 𝜋

uint32_t w[MM_COMPRESS_TYPE_NENTRIES]
encoding of 𝑐𝑖, 𝜏𝑖

uint32_t cur
index of last entry intered into component w

uint32_t back
True if structure is filled in reverse order.

struct gt_subword_s
#include <mm_reduce.h> Stucture to store a subword of generators of the Monster.

This structure is required in file mm_shorten.c.

It stores a subword of a word in the Monster in a node of a circular doubly-linked list. There is a dedicated EOF
(end of file) mark in that list, in which member eofis set to 1; and elsewhere member eof is set to zero. Note
that standard operations like insertions and deletions are easier in a circular doubly-linked list than in a standard
doubly-linked list.

Member data contains a word 𝑔 of generators of the subgroup 𝐺𝑥0; and member t_exp contains an exponent
0 ≤ 𝑒 < 3. Then the structure represents the element 𝑔𝜏𝑒 of the Monster, where 𝜏 is the triality element in the
subgroup 𝑁0 of the Monster.

The length of a word in member data is limited to the size MAX_GT_WORD_DATA - 1; and we will reduce that
word using function xsp2co1_reduce_word in module xsp2co1.c if necessary. Note that member data may
contain atoms with tags 'x', 'y', 'd', 'p', 'l' only, and the inversion bit in such an atom is always
cleared.

Member img_Omega contains the image 𝑔 · Ω, where Ω is the standard frame of the Leech lattice mod 2. Here
img_Omega is given in Leech lattice encoding. Member reduced is 1 if the word in member data is reduced
(by function xsp2co1_reduce_word) and 0 otherwise.

Public Members

uint32_t eof
0 means standard subword, 1 means EOF mark

uint32_t length
Number of entries in component data

uint32_t img_Omega
Image of Ω under element.

uint32_t t_exp
Exponent of final tag ‘t’.
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uint32_t reduced
True if part ‘data’ is reduced.

struct gt_subword_s *p_prev
Pointer to previous subword.

struct gt_subword_s *p_next
Pointer to previous subword.

uint32_t data[MAX_GT_WORD_DATA]
Element of monster group.

struct gt_subword_buf_s
#include <mm_reduce.h> Structure to store an array of entries of type gt_subword_type

We allocate several entries of of type gt_subword_type with a single call to function malloc. This saves a
considerable amount of interaction with the operating system.

This structure contains an array of type gt_subword_type[] plus the necessary bookkeeping information.

Public Members

uint32_t capacity
max No of type gt_subword_s entries

uint32_t n_used
used No of type gt_subword_s entries

struct gt_subword_buf_s *p_next
Pointer to next buffer.

gt_subword_type subwords[1]
array of subwords in this buffer

struct gt_word_type
#include <mm_reduce.h> Stucture to store a word of generators of the Monster.

This structure is required in file mm_shorten.c.

It stores a word in the Monster in a circular doubly-linked list of nodes of type gt_subword_type. Each of these
node represents subword of that word, and there is a dedicated EOF (end of file) mark in that list that marks both,
the beginning and the end of the list. Member p_end always points to the EOF mark.

The structure contains a pointer p_node pointing to one of the nodes of the list, which we will call the current
node. Some functions in these module take a pointer to this structure, and the perform operations on the current
node. The pointer may be manipulated with function gt_word_seek.
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Public Members

gt_subword_type *p_end
Pointer to the end mark subword.

gt_subword_type *p_node
Pointer to current subword.

gt_subword_type *p_free
Pointer to list of free subwords.

int32_t reduce_mode
Mode for the reduction of a word.

uint32_t is_allocated
1 if this structure has been allcocated

gt_subword_buf_type *pb0
pointer to first buffer

gt_subword_buf_type *pbe
pointer to last buffer

gt_subword_buf_type buf
1st buffer containing Array of subwords

3.6.3 C interface for file mm_order_vector.c

File mm_order_vector contains the precomuted order_vector and data related to that order_vector,

It also contains functions for retrieving these data.

Functions

int32_t mm_order_load_tag_data(uint32_t n, uint32_t *buf, uint32_t buf_size)
Load data from tables to a buffer.

The propose of this function is to provide the information for checking the correctness of the precomuted order
vector 𝑣1 stored in this module.

This function stores precomputed data in a buffer buf of type uint32_t[buf_size], where buf_size is the
size of the buffer. Parameter n specifies the value to be stored in the buffer. The function returns the length of
the data in buffer. If the buffer is too short for that data then the function returns -1. A size parameter buf_size
= 128 is sufficient for all cases of n.

In case n = 0 the function returns the array TAG_VECTOR of length 97. The tag vector is documented in file
mm_order.c.

In case n > 0 the function returns data required for verifying the precomputed order vector 𝑣1. The order vector
is discussed in [Sey22].
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In case n = 1,2,3 the function returns the values 𝑔71 ∈ M, 𝑣071 ∈ 𝜌3, 𝑔 ∈ M, respecively, in the internal sparse
format. With these data we can compute:

𝑣71 =
∑︀70

𝑖=0 𝑣
0
71 · 𝑔𝑖71𝑔 (mod 3).

In case n = 4 the function returns the integer 𝐷 in entry 0 of the buffer. In case n = 5, 6 the function returns
the values 𝑔94 ∈ M, 𝑣094, respectively. With this data we can compute:

𝑣94 =
∑︀93

𝑖=0(−1)𝑖 · 𝑣094 · 𝑔𝑖94 (mod 5).

𝑣1 = 10 · 𝑣71 + 6 · 𝑣94 + 5 ·𝐷 · 1𝜌 (mod 15).

Here 1𝜌 is defined as in [Sey22]. We can also check that the order vector 𝑣1 satisfies the properties required in
[Sey22].

In case n = 7, 8, 9, the function returnes the parts TAGS_Y, TAGS_X, and TAG_SIGN, respectively, of
the TAG_VECTOR. For a description of the TAG_VECTOR see the description of enum tag_offsets in file
order_vector.c.

void mm_order_load_vector(uint_mmv_t *p_dest)
Load order vector from tables to a buffer.

The function stores the precomputed order vector 𝑣1 into the array referred by p_dest. That array must must be
sufficiently long to store a vector of the representation 𝜌15.

See [Sey22] for a decription of the properties of the vector 𝑣1 in the representation 𝜌15 of the monster group.

The standard way to obtain the number of entries of type unint_mmv_t required for a vector of the representation
𝜌15 is to call function mm_aux_mmv_size(15) in file mm_aux.c.

int32_t mm_order_compare_vector(uint_mmv_t *p_v)
Compare vector with precomputed order vector.

The function compares the vector 𝑣 in the representation 𝜌15 of the monster group referred by p_v with the
precomputed order vector 𝑣1.

The function returns 0 in case of equality and 1 otherwise.

int32_t mm_order_compare_vector_part_A(uint_mmv_t *p_v)
Compare A part of vector with precomputed order vector.

The function compares the A part the vector 𝑣 in the representation 𝜌15 of the monster group referred by p_v
with the A part of the precomputed order vector 𝑣1.

The function returns 0 in case of equality and 1 otherwise.

uint64_t mm_order_hash_vector(uint_mmv_t *p_dest)
Return the hash value of the ordervector.

The function returns the hash value of the precomuted order vector as given by function mm_aux_hash in file
mm_aux.c.
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3.6.4 C interface for file mm_order.c

File mm_order.c contains functions for checking if an element is in the subgroup 𝐺𝑥0 (or 𝑄𝑥0) of the monster group.
If this is the case, the element is expressed as a word in the generators of the corresponding subgroup.

File mm_order.c also contains functions for computing the order of an element of the monster.

All these function use the precomputed order_vector in file mm_order_vector.c

Enums

enum tag_offsets
The following enumeration contains the offsets of the (static) array TAG_VECTOR of unsigned 32-bit integers
stored in this module. This array contains data that are required for dealing with the precomputed order vec-
tor 𝑣1 stored in this module. That order vector can be obtained by calling function mm_order_load_vector
in module mm_order_vector.c. The data in the array TAG_VECTOR can be obtained by calling function
mm_order_load_tag_data(0, buf, 97) in the same module, with buf of type uint32_t[97].

The purpose of the order vector 𝑣1 is to identify an element 𝑔 of the subgroup 𝐺𝑥0 of the monster from 𝑣1 · 𝑔, as
described in [Sey22]. The basic steps of this identification process are:

a. Given 𝑣1 · 𝑔, reduce 𝑔 to an element 𝑔1 of 𝑁𝑥0, see [Sey22] for background.

b. Given 𝑣1 · 𝑔1, reduce 𝑔1 ∈ 𝑁𝑥0 to 𝑔2, where 𝑔2 is in a certain 2 group of structure 21+24+11. There-
fore we have to watermark of the A part of 𝑣1 · 𝑔1 with function mm_op15_watermark_A in module
mm15_op_eval_A.c. Then we have to check that watermark against the precomputed watermark of the
A part of 𝑣1 using function mm_op15_watermark_A_perm_num in the same module. That precomputed
watermark (of length 24) is stored in the array TAG_VECTOR at offset OFS_WATERMARK_PERM.

c. Given 𝑣1 · 𝑔2, with 𝑔2 as above, we want to present 𝑔2 as a product of generators 𝑔2 = 𝑥𝑑𝑥𝛿𝑦𝑒.
For computing the factor 𝑦𝑒 we have to extract (the signs of) 11 entries of 𝑣1 · 𝑔2, with function
mm_aux_mmv_extract_sparse_signs in module mm_aux.c. The coordinates and the expected val-
ues of these 11 entries are stored at the TAG_VECTOR at offset OFS_TAGS_Y. Once having extracted these
sign bits we have to solve the linear equation system given by the 11 entries at the TAG_VECTOR at offset
OFS_SOLVE_Y. This solution gives the value 𝑒 of the factor 𝑦𝑒.

d. For computing the part 𝑥𝑑𝑥𝛿 of 𝑔2 (up to sign) we have to extract (the signs of) 24 more entries of the vector
𝑣1 · 𝑔2𝑦−1

𝑒 and to solve another equation system as in the previous step. Here the relevant coordinates are
stored at the TAG_VECTOR at offset OFS_TAGS_X, and the equation system is stored at offset OFS_SOLVE_X.

e. To correct the sign in the part 𝑥𝑑𝑥𝛿 , we have to extract another sign from 𝑣1 · 𝑔2 · 𝑦−1
𝑒 (𝑥𝑑𝑥𝛿)−1 at the

coordinate given by OFS_TAGS_SIGN.

Values:

enumerator OFS_NORM_A
Sum of the squares of the A part of 𝑣1 (mod 15)

enumerator OFS_DIAG_VA
For compatibly with older versions, always equal to 0

enumerator OFS_WATERMARK_PERM
Watermark of the A part of 𝑣1 (mod 15)
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enumerator OFS_TAGS_Y
Entries of 𝑣1 used for computing 𝑦𝑒

enumerator OFS_SOLVE_Y
Equation system used for computing 𝑦𝑒

enumerator OFS_TAGS_X
Entries of 𝑣1 used for computing 𝑥𝑑

enumerator OFS_SOLVE_X
Equation system used for computing 𝑥𝑒

enumerator OFS_TAG_SIGN
Entry of 𝑣1 used for computing sign of 𝑥𝑑

Functions

int32_t mm_order_check_in_Gx0_fast(uint_mmv_t *v)
Quick check if a vector is an image under an element of 𝐺𝑥0.

Assume that the vector 𝑣 in 𝜌15 referred by v is the image of the precomputed order vector 𝑣1 under an (unknown)
element 𝑔 of the monster. The function checks if that element 𝑔 is in the subgroup 𝐺𝑥0 of the monster.

The function may return 0, 1, or a negative value. If it returns 0 then 𝑔 is not in 𝐺𝑥0. If it returns 1 then 𝑔 is
in 𝐺𝑥0 with an error probability that is negligible for all practial purposes. A negative return value indicates an
error.

int32_t mm_order_check_in_Gx0(uint_mmv_t *v, uint32_t *g, uint32_t mode, uint_mmv_t *work)
Check if a vector is an image under an element of 𝐺𝑥0.

Assume that the vector 𝑣 in 𝜌15 referred by v is the image of the precomputed order vector 𝑣1 under an (unknown)
element 𝑔 of the monster. We want to find that element 𝑔 if it is in the subgroup 𝐺𝑥0 of the monster.

We first describe the action of the function in the standard case that parameter mode is zero.

The function computes the element 𝑔 if it is in the subgroup 𝐺𝑥0 of the monster; otherwise it fails.

In case of success the function writes the element 𝑔 into the array g as a word in the generators of 𝐺𝑥0 of length
at most 11; and the function returns the length of that word.

If no such element 𝑔1 has been found then the function returns a number greater than 256. Then the exact return
value gives some indication why no such element 𝑔 has been found; this is for debugging only.

A negative return value indicates an internal error.

The function also requires an array work of length 15468 as a work buffer. This is the capacity required for
storing a vector in the representation 𝜌15.

Parameter mode is a bit field that modifies the action of the function as follows:

If bit 0 is set, then the inverse of the result 𝑔 is returned in buffer g.

If bit 1 is set then we insert an atom into the word in g that indicates the image of the vector Ω ∈ Λ/2Λ under
conjugation with 𝑔0. Such an atom is considered as a comment, acting as the neutral element of the monster
group. This is required for function mm_reduce_M in file mm_reduce.c. See documentation in that file for
details.
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If bit 2 is set then we perform an action to be used for internal tests only. Then the function computes an element
𝑔1 such that 𝑔−1𝑔1 ∈ 𝑄𝑥0 holds in case 𝑔 ∈ 𝐺𝑥0. If 𝑔 /∈ 𝐺𝑥0 then the function detects this fact with high
probability. Usually, 𝑔1 is a shorter word in the generators of the monster than 𝑔.

If bit 3 is set then input vector v is preserved; but the work buffer work must have the (doubled) length 30936
for storing an additional temporary copy of vector v.

int32_t mm_order_element_Gx0(uint32_t *g, uint32_t n, uint32_t *h, uint32_t o)
Compute exponent 𝑒 such that 𝑔𝑒 ∈ 𝐺𝑥0.

Let 𝑔 be the element of the monster group stored in the array g as a word of generators of the monster group of
length n.

The function computes the smallest exponent 𝑒 such that 𝑔𝑒 is in 𝐺𝑥0. Then the function writes ℎ = 𝑔𝑒 into the
buffer h as a word of generators of 𝐺𝑥0 of length at most 10. Let 𝑘 be the length of the word representing ℎ.
Then the function returns the value 0x100 · 𝑒 + 𝑘; here we have 1 ≤ 𝑒 ≤ 119 and 0 ≤ 𝑘 ≤ 10.

Computation of 𝑒 is time consuming, and in some cases we are interested in small values of 𝑒 only. Parameter o
is an upper bound for the exponent 𝑒 . The function may abort and return 0 in if 𝑒 is greater than o; then the data
in buffer h are invalid.

A negative return value indicates an internal error.

int32_t mm_order_element_M(uint32_t *g, uint32_t n, uint32_t o)
Compute order of an element 𝑔 of the monster.

Let 𝑔 be the element of the monster group stored in the array g as a word of generators of the monster group of
length n.

The function returns the order of 𝑔.

Computation of the order is time consuming, and in some cases we are interested in small orders only. Parameter
o is an upper bound for the order. The function may return 0 if the order is greater than o.

A negative return value indicates an error.

3.6.5 C interface for file mm_reduce.c

Function mm_reduce_M is the most important C function in this project. It reduces an arbitrary element of the mon-
ster group (represented as a word in the generators of the monster) to a word of fixed maximum length. Function
mm_reduce_M uses the method in [Sey22] for reducing an element of the monster.

Here a word in the monster group is represented as an array of 32-bit integers of type uint32_t as described in section
The monster group in the API reference. Such an array represents a word of generators of the monster. Thus group
multiplication is concatenation of words. An generator in a word (given by an entry in the array of integers) can be
inverted by flipping its most significant bit.

According to [Sey22], and element 𝑔 of the monster group can be computed from the images 𝑣+𝑔, 𝑣−𝑔, and 𝑣1𝑔. Here
𝑣+, 𝑣− ∈ 𝜌15 are certain 2A axes, and 𝑣1 ∈ 𝜌15 is certain vector used for recognizing an element of the subgroup 𝐺𝑥0

of the monster, see ibid. for details. Representation 𝜌15 is the 198884-dimensional faithful representation of the monster
group modulo 15. Vector 𝑣1 is also called an order vector; and we can use the functions in module mm_order.c for
dealing with a fixed precomputed order vector.

An element of 𝜌15 is implemented as a array of MM_OP15_LEN_V integers of type uint_mmv_t as described in The C
interface of the mmgroup project, section Description of the mmgroup.mm extension. The value MM_OP15_LEN_V
is defined in file mm_op15.h.

For reducing an element 𝑔 of the monster we have to analyze the images 𝑣+𝑔, 𝑣−𝑔, and 𝑣1𝑔 in that order.
This file also exports subfunctions for performing these tasks. We use subfunctions mm_reduce_vector_vp,
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mm_reduce_vector_vm, and mm_reduce_vector_v1 for analyzing 𝑣+𝑔, 𝑣−𝑔, and 𝑣1𝑔, respectively. These func-
tions accumulate their results in a buffer (of type uint32_t[] and size at least 128) that will eventually contain the
reduced word equal to 𝑔.

The following code example shows an implementation of the main function mm_reduce_M based on these subfunctions,
ignoring the error handling.

// The following buffers contain the element ``g`` to be reduced
uint32_t a[256]; // buffer containing element ``g``
uint32_t n; // length of data in buffer ``a``

// The folling buffers will contain the reduced element ``g``
uint32_t r[256]; // buffer for reduced element ``g``
uint32_t len; // length of data in buffer ``r``

// Temporary work buffers
uint_mmv_t v[MM_OP15_LEN_V]; // buffer for 2A axes
uint_mmv_twork[MM_OP15_LEN_V]; // work buffer

mm_op15_store_axis(V_PLUS, v ); // Store 2A axis V_PLUS in v
mm_op15_word(v, a, n, 1, work); // multiply v_plus with g
mm_reduce_vector_vp(0, v, mode, r, work); // reduce V_PLUS * g

mm_op15_store_axis(V_MINUS, v ); // Store 2A axis V_MINUS in v
mm_op15_word(v, a, n, 1, work); // multiply v_minus with g
mm_reduce_vector_vm(0,v, r, work); // reduce V_MINUS * g

mm_order_load_vector(v); // load the order vector v_1
mm_op15_word(v, a, n, 1, work); // multiply v_1 with g
len = mm_reduce_vector_v1(v, r, work); // reduce v_1 vector

// Now buffer ``r`` contains the reduced word of length ``len``
// equal to the element ``g`` of the monster group.

Functions

uint32_t mm_reduce_2A_axis_type(uint_mmv_t *v)
Return type of a 2A axis in rep of monster.

Let v be a vector in the 196884-dimensional representation of the monster group modulo 15, encoded as described
in section Description of the mmgroup.mm<p> extensions in the description of the C interface.

If v is a 2A axis then the function computes the type of the 2A axis. Each 2A axis corresponds uniquely to a 2A
involution 𝑥 in the monster. Let 𝑧 be the central involution in the subgroup 𝐺𝑥0 of the monster. Then the type
of the 2A axis v is the class of the product 𝑥𝑧 in the monster, which has one of the values 2A, 2B, 4A, 4B, 4C,
6A, 6C, 6F, 8B, 10A, 10B, 12C

The function returns a value n * 2**28 + k * 2**24 + v. Here n is the number of the class, e.g. n == 6
for class 6C, k encodes the letter in the name of the class (‘A’ = 1, ‘B’ = 2, . . . ) e.g. k = 3 for class 6C.

Output v is either 0 or a vector in the Leech lattice mod 2 found during the computation. Here a vector of type
2 is returned for classes 2A, 6A; and a vector of type 4 is returned for class 4A.

Caution:
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This is a quick disambiguation of the type of a 2A axis. The function may return any axis type if v is not a 2A
axis.

int32_t mm_reduce_analyze_2A_axis(uint_mmv_t *v, uint32_t *r)
Analyze a 2A axis in rep of monster.

Let v be a vector in the 196884-dimensional representation of the monster group modulo 15, encoded as described
in section Description of the mmgroup.mm<p> extensions in the description of the C interface.

If v is a 2A axis then the function analyzes the type of the 2A axis. Each 2A axis corresponds uniquely to a 2A
involution 𝑥 in the monster. Let 𝑧 be the central involution in the subgroup 𝐺𝑥0 of the monster. Then the type
of the 2A axis v is the class of the product 𝑥𝑧 in the monster, which has one of the values 2A, 2B, 4A, 4B, 4C,
6A, 6C, 6F, 8B, 10A, 10B, 12C

The function returns 0 in case of success and a negative value value if it detects an error.

Buffer r should be at least 896 bytes long. It will contain the result.

Details are yet to be documented!!!

Caution:

This is a quick analyis of a 2A axis. The function returns garbage if v is not a 2A axis.

uint32_t mm_reduce_find_type4(uint32_t *v, uint32_t n, uint32_t v2)
Select a type-4 vector from list of Leech lattice vectors

Let v be an array of n vectors in the Leech lattice modulo 2 in Leech lattice encoding.

If parameter v2 is 0 then the function returns the least vector of type 4 in the list v with repect to a certain
ordering. If list v contains no vector of type 4 then the function returns 0.

Here subtypes are ordered as follows: [48, 40, (42, 44), 46, 43]. So e.g. a vector of subtype 40 is
selected in favor of a vactor of subtype 46. We do not distinguish between substypes 42 and 44. From all vectors
of the same subtype (equalizing subtypes 42 and 44) we return the smallest vector in the list in the natural order.

If v2 is nonzero then we accept only vectors v1 in the list v with type(v1) = 4 and type(v1 + v2) = 2.

The list v is destroyed. More precisely, all entries of v are masked with 0xffffff and subjected to an (undoc-
umented) permutation.

int32_t mm_reduce_transform_v4(uint_mmv_t *v, uint32_t v4, uint32_t *target_axes, uint32_t *r, uint_mmv_t
*work)

Transform a 2A axis to a ‘better’ 2A axis.

The function tries to transform the 2A axis 𝑣 given by parameter v to a better axis. Therefore it first applies a
transformation 𝑔 ∈ 𝐺𝑥0 given by parameter v4. Here v4 must be a vector of type 4 in the Leech lattice mod
2 in Leech lattice encoding. Then 𝑔 is the transformation mapping v4 to the standard type 4-vector Omega as
computed by function gen_leech2_reduce_type4.

In the next step this function tries to apply the transfomations 𝜏𝑒 for 𝑒 = 1, 2 (in that order) until the type of the
axis 𝑣𝑔𝜏𝑒 is in a set of types given by parameter target_axes. Here target_axes must be an array of length
2 containing the feasible axis types, encoded as described in function mm_reduce_2A_axis_type. An unused
entry in array target_axes should be set to 0xffffffff.

If a suitable transformed axis 𝑣𝑔𝜏𝑒 has been found then the function stores the element 𝑔𝜏𝑒 in the array referred
by r; and it returns the length of the data in the array r. Then it also overwrites the axis in buffer v with the
transformed axis.

The function returns a negative value in case of any error, e.g. if no suitable transformed axis 𝑣 has been found;
then buffers v and r will contain garbage.
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If the original axis 𝑣 is orthogonal to the standard 2A axis then the transformed axis is also orthogonal to that
axis.

Buffer rmust have size at least 7. The function requires a work buffer work of the same type and size as parameter
v.

int32_t mm_reduce_load_axis(uint_mmv_t *v, uint32_t s)
Load the 2A axis 𝑣+ or 𝑣− into a vector in 𝜌15.

The function loads the 2A axis 𝑣+ (in case s == 0) or 𝑣− (in case s == 1) in the vector referred by v. Other
values of s are illegal. Vector vwill store an element of the representation 𝜌15 of the monster group as described
in the header of this file. Vectors 𝑣+ and 𝑣− are defined in [Sey22], Section 6.

int32_t mm_reduce_map_axis(uint32_t *vt, uint_mmv_t *v, uint32_t *a, uint32_t n, uint_mmv_t *work)
Transform a 2A axis with an element of the Monster group.

Here we encode a 2A axis 𝑣 as follows. It may be encoded as an element of the group 𝑄𝑥0 in the integer referred
by vt. In case *vt = 0 we encode 𝑣 as a vector of the representation 𝜌15 of the Monster in the array v. In case
*vt != 0 the value *vt must be a short element (corresponding to a type-2 vector in Λ/2Λ) of the group 𝑄𝑥0,
in Leech lattice encoding. v is ignored in case *vt != 0.

Let 𝑔 be the element of the monster given as a word of generators in the buffer a of length n. Then the function
computes 𝑣′ = 𝑣 · 𝑔 and stores 𝑣′ in *vt (if possible), or in v. In last case it sets *vt to zero.

The function returns 0 in case of success an a negative value in case of failure. It requires a work buffer work of
the same type and size as parameter v.

int32_t mm_reduce_vector_vp(uint32_t *vt, uint_mmv_t *v, uint32_t mode, uint32_t *r, uint_mmv_t *work)
Step 1 of the reduction of an element of the monster.

Here inputs vt and v of this function encode a 2A axis 𝑣 as described in function mm_reduce_map_axis. Here
𝑣 is considered as an image 𝑣 = 𝑣+ · 𝑔 of 𝑣+ under the operation of an (unknown) element 𝑔 of the Monster
group.

The function computes an element ℎ of the monster group with 𝑣 · ℎ = 𝑣+. We use the method in [Sey22],
Section 6 ff. for computing ℎ.

The function stores ℎ as a word of generators in the array r as described in the header of this file and returns the
length of this word. That word is augmented by some atoms acting as comments

The buffer referred by r should have length at least 128.

Parameter mode is yet to be documented! In the current version is should be set to 1. This means that the function
will strictly follow the reduction method in ibid.

A negative return value indicates a fatal error.

Parameter work must refer to a work buffer of size at least MM_OP15_LEN_V.

More details are yet to be documented!!!!

int32_t mm_reduce_vector_shortcut(uint32_t stage, uint32_t mode, uint32_t axis, uint32_t *r)
Simulate steps of the reduction of an element of the monster.

Yet to be documented!!!!

int32_t mm_reduce_vector_vm(uint32_t *vt, uint_mmv_t *v, uint32_t *r, uint_mmv_t *work)
Step 2 of the reduction of an element of the monster.

This function should be applied immediately after function mm_reduce_vector_vp.
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Here inputs vt and v of this function encode a 2A axis 𝑣 as described in function mm_reduce_map_axis. Here
𝑣 is considered as an image 𝑣 = 𝑣+ · 𝑔 of 𝑣+ under the operation of an (unknown) element 𝑔 of the Monster
group.

The function computes an element ℎ of the monster group with 𝑣 · ℎ = 𝑣−. We use the method in [Sey22],
Section 8, for computing ℎ. Note that ℎ preserves the 2A axis 𝑣+.

The function appends ℎ as a word of generators to the array r as described in the header of this file and returns the
length of the data in the array r. That information in buffer r is augmented by some atoms acting as comments.

The buffer referred by r should have length at least 128.

A negative return value indicates a fatal error.

Parameter work must refer to a work buffer of size at least MM_OP15_LEN_V.

More details are yet to be documented!!!!

int32_t mm_reduce_vector_v1(uint_mmv_t *v, uint32_t *r, uint_mmv_t *work)
Step 3 of the reduction of an element of the monster.

This function should be applied immediately after functions mm_reduce_vector_vp and
mm_reduce_vector_vm.

Here input v of this function must refer to the image of the precomputed order vector 𝑣1 ∈ 𝜌15 under
the operation of the same element 𝑔 of the monster group as described in the documentation of function
mm_reduce_vector_vp.

The function computes an element ℎ of the monster group with 𝑣 · ℎ = 𝑣1. We use the method in [Sey22],
Appendix A. for computing ℎ. Note that ℎ preserves the 2A axes 𝑣+ and 𝑣−.

The function appends ℎ as a word of generators to the array r as described in the header of this file and returns the
length of the data in the array r. That information in buffer r is augmented by some atoms acting as comments.

Finally, the function computes a word in the buffer that is equal to the element 𝑔 of the monster group and stores
that element in the buffer r. The function returns the length of data in buffer r.

The buffer referred by r should have length at least 128.

A negative return value indicates a fatal error.

Parameter work must refer to a work buffer of size at least MM_OP15_LEN_V.

static inline int32_t mm_reduce_vector_v1_mod3(uint_mmv_t *v, uint32_t *r, uint_mmv_t *work)
Variant of Step 3 of the reduction of an element of the monster.

This is a variant of function mm_reduce_vector_v1 that works with precomputed order vector 𝑣1 ∈ 𝜌3 instead
of an order vector in 𝜌15. Parameters and operation are the same as in function mm_reduce_vector_v1. But here
input v of this function must refer to the image of the precomputed order vector 𝑣1 ∈ 𝜌3 under the operation of
the same element 𝑔 of the monster group as described in the documentation of function mm_reduce_vector_vp.

The order vector 𝑣1 ∈ 𝜌3 can be obtained by using the functions in module mm_vector_v1_mod3.c.

This function is faster than function mm_reduce_vector_v1. But the order vector in 𝑣1 ∈ 𝜌3 may have a
non-trivial centralizer in the Monster; so we cannot use it for checking equality of elements of the Monster.

The buffer referred by r should have length at least 128.

A negative return value indicates a fatal error.

Parameter work must refer to a work buffer of size at least MM_OP3_LEN_V.
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static inline int32_t mm_reduce_vector_shorten(uint32_t *a, uint32_t n, uint32_t *r, uint_mmv_t *work)
Special case of Step 3 of reduction of an element of the monster.

This is a variant of function mm_reduce_vector_v1 that works in the special case when all prefixes of a word
𝑔 in the Monster map the 2A-involutions 𝑣+ and 𝑣− to 2A-involutions in the subgroup 𝑄𝑥0 of 𝐺𝑥0. Here the
mapping is done via conjuation. That condition holds e.g if all prefixes of the word 𝑔 are in ∈ 𝑁𝑥 ·𝐺𝑥0.

The function returns 0 in case of success and a negative value in case of failure. In case of success, this function
is (at least) 100 times faster than function mm_reduce_vector_v1. So using this function leads to a substantial
speedup when computing in the 2-local subgroups 𝑁𝑥 or 𝐺𝑥0 of the Monster. The user profits from this speedup
without effort, since function mm_reduce_M calls function mm_reduce_vector_shorten when appropriate.

Here the original element 𝑔 of the Monster to be reduced must be stored in the buffer a of length n as usual.
Parameters r and work are as in function mm_reduce_vector_v1.

If function mm_reduce_vector_shorten returns a negative value then we may retry the final reduction of 𝑔
with one of the functions mm_reduce_vector_v1 or mm_reduce_vector_v1_mod3.

int32_t mm_reduce_vector_incomplete(uint32_t *r)
Step finish incomplete reduction of an element of the monster.

This function should be applied immediately after function mm_reduce_vector_vp or after function
mm_reduce_vector_vn.

The function outputs the word already stored in the buffer r computed by the functions mm_reduce_vector_vp
and, possibly, mm_reduce_vector_vn and returns the length of the data in buffer r. Here we assume that
subsequent calls to the functions in the sequence

mm_reduce_vector_vp, mm_reduce_vector_vn, mm_reduce_vector_v1,

that have not yet been called, would contribute nothing the the output assembled in buffer r.

The buffer referred by r should have length at least 128.

A negative return value indicates a fatal error.

More details are yet to be documented!!!!

int32_t mm_reduce_M(uint32_t *a, uint32_t n, uint32_t mode, uint32_t *r)
Reduce an element in the monster group.

This is the most important function in the project. It reduces an arbitrary element 𝑔 of the monster to an element
ℎ. The value of the element ℎ depends on the value of 𝑔 as an element of the monster group, but not of the
representation of 𝑔.

Let 𝑔 be the element of the monster given as a word of generators in the buffer a of length n. Then the function
computes the reduced element ℎ of the monster with 𝑔 = ℎ. We use the method in [Sey22] for computing ℎ.

The function stores ℎ as a word of generators in the array r as described in the header of this file and returns the
length of this word.

A negative return value indicates a fatal error.

The buffer referred by r should have length at least 128.

Parameter mode should usually be set to zero. It is interpreted as follows:

If bit 0 of mode is set then the reduction is strictly compatible with the reduction process described in [Sey22].
Otherwise we perform a more practical reduction. The latter reduction ensures e.g. that an element of the
subgroup 𝐺𝑥0 is always represented as a word in the generators of that subgroup. This feature greatly accelerates
computations in the subgroup 𝐺𝑥0.

Bit 1 of mode should be set for tests only. If this bit is set then we omit some simplifications of the input prior to
the actual reduction.
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uint32_t mm_reduce_set_order_vector_mod15(uint32_t mode)
Set a special reduction mode for tests.

The end user need not call this function.

In [Sey22] we show how to compute an ‘order vector’ 𝑣1 in the representation 𝜌15 of the Monster satisfying the
following property:

The only element of the Monster fixing 𝑣1 is the neutral element of the Monster.

For verifying this property of 𝑣1 is suffices to use the methods in [LPWW98]. Thus by tracing the an image of
𝑣1 under an element 𝑔 back to its preimage 𝑣1 we obtain a verification of a reduction process which depends on
classical results only.

By default, the main reduction function mm_reduce_M in this module uses an ‘order vector’ in 𝜌3 which leads to
a faster reduction process than obtained by using 𝑣1.

When calling function mm_reduce_set_order_vector_mod15 with parameter mode = 1 then in all subse-
quent calls to function mm_reduce_M we will use an ‘order vector’ 𝑣1 in 𝜌15 as desrcibed above; and we will
verify that the ‘reduced’ form of an element 𝑔 of the Monster maps 𝑣1 to the same vector as the original element
𝑔 does.

This gives a tester the capability to do long calcuations in the Monster group that will be verified by using classical
results without referring to the theory developed in [Sey22].

The user may switch back to the default behaviour by calling function mm_reduce_set_order_vector_mod15
with parameter mode = 0. The function returns the value of parameter mode passed in the previous call (or the
default value 0 at first call).

3.6.6 C interface for file mm_shorten.c

This file contains function for reducing a word of generators of the Monster group. Here word reduction is done by
computations in the subgroups 𝐺𝑥0 = 21+24.Co1 and 𝑁0 = 22+11+22.(Mat24 × Sym3). To some extent, we will also
compute in the Frobenius group of order 21 generated by the generators 𝜏 and 𝜉 of the Monster.

Internally, we store a word a of generators of the Monster in a structure of type gt_word_type. Here the word a is split
into subwords, where each subword is in the double coset𝐺𝑥0𝑁0. Such a subword is represented as a word of generators
of 𝐺𝑥0, followed by a power of the triality element 𝜉. A subword is stored in a structure of type gt_subword_type.

Unless otherwise stated, a negative return value of a function is this module indicates an error.

Structures required for this module are defined in file mm_reduce.h.

The following code block demonstrates the reduction of a word with the functions in this module (ignoring error
handling).

// Assume that the following buffer contains a word ``g``
// of length 10 of generators of the Monster group
#define INPUT_LENGTH 10
uint32_t in_buf[INPUT_LENGTH];
// Declare a sufficiently long output buffer
#define MAX_OUTPUT_LENGTH 20
uint32_t out_buf[MAX_OUTPUT_LENGTH];
// Define a reduction mode as specified in function gt_word_alloc
#define REDUCTION_MODE 1
// Allocate a structure for reduction
gt_word_type* p_gt = gt_word_alloc(REDUCTION_MODE, NULL, 0);
// Enter the word ``g`` into that structure

(continues on next page)
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(continued from previous page)

gt_word_append(p_gt, in_buf, INPUT_LENGTH);
// Reduce the word in that structure
gt_word_reduce(p_gt);
// Store the reduced word in the output buffer and the actual
// length of that word in variable output_length
int32_t output_length;
output_length = gt_word_store(p_gt, out_buf, MAX_OUTPUT_LENGTH);
// Free the allocated structure
gt_word_free(p_gt);

Functions

void gt_subword_clear(gt_subword_type *p_gtsub)
Low-level function.

Set a subword to the empty subword.

gt_word_type *gt_word_alloc(uint32_t mode, void *p_buffer, size_t nbytes)
Create a structure of type gt_word_type

This function creates a valid structure of type gt_word_type and returns a pointer to that structure. The returned
structure contains the empty word of generators of the Monster. If a buffer p_buffer of nbytes bytes length is
given as a parameter then the structure may be ininitalized inside this buffer. We recommend nbytes >= 4096.

If p_buffer = NULL or nbytes is too small then a buffer is allocated via the C function malloc. You should
always use the returned pointer as a pointer to a valid structure of type gt_word_type containing the neutral
element of the Monster.

The structure referred by returned pointer will contain the circular doubly linked list with a single entry of type
gt_subword_type. This entry is an end-of-file mark. So the whole word stored in that structure corresponds
to the neutral element of the Monster group.

In any case function gt_word_free must be called to free all buffers allocated by this function and, possibly,
by other function in this module applied to the pointer returned by this function.

Parameter mode specifies the reduction mode:

mode = 0 means no reduction. Here the user has to apply the low-level functions in this module to perform
reduction. This mode is used for testing.

mode = 1 means the maximum possible reduction which is supported.

mode = 2means a lazy mode of reduction. The idea is to reduce only in cases where we can expect a substantial
decrease of the word length. This mode is faster than mode = 1.

This function returns NULL in case of failure, e.g. if the C function malloc`fails to allocate memory.

void gt_word_free(gt_word_type *p_gt)
Free a structure of type gt_word_type

This function frees the memory allocated to a structure of type gt_word_type created by function
gt_word_alloc. Ultimately, it must be applied to all pointers created by function gt_word_alloc in order
to avoid memory leaks. It is safe to apply function gt_word_free to the NULL pointer.

void gt_word_clear(gt_word_type *p_gt)
Set content of the structure *p_gt to the empty word.
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This function sets the value of the structure of type gt_word_type referred by p_gt to the neutral element of
the Monster. It also frees all allocated memory blocks referred by p_gt, except for the block p_gt itself.

int32_t gt_word_insert(gt_word_type *p_gt)
Low-level function.

Insert an empty subword after the current subword pf *p_gt and set the position of the current subword to the
new subword.

Return a negative value if out of memory.

int32_t gt_word_delete(gt_word_type *p_gt)
Low-level function.

Delete the current subword, and set the position of the current subword to its predecessor.

Return a negative value on an attempt to delete an EOF mark.

int32_t gt_word_seek(gt_word_type *p_gt, int32_t pos, uint32_t set)
Low-level function.

Move the pointer to the current subword to position ‘pos’ Her pos = 0 means the EOF mark if ‘set’ is True, and
the position of the current subword otherwise. pos = i+1 means the subword after pos = i, pos = i-1 means node
subword pos = i.

It is an error to move p_gt->p_node across the EOF node. When starting at the EOF node we may move forward
or back until finding the EOF node once again, but not any further.

int32_t gt_word_append_sub_part(gt_word_type *p_gt, uint32_t *a, uint32_t n)
Low-level function.

Try to append a prefix of word ‘a’ of length ‘n’ to the current subword. Return number of atoms of ‘a’ sucessfully
appended to that word. A negative return value inducates an error.

int32_t gt_word_reduce_sub(gt_word_type *p_gt, uint32_t sub_mode)
Low-level function.

Reduce current subword

sub_mode = 0: lazy reduction (just some word shortening)

sub_mode = 1: standard reduction

sub_mode = 2: as sub_mode 0, but move also prefix in N_x0 to previous subword

sub_mode = 3: as sub_mode 1, but move also prefix in N_x0 to previous subword

int32_t gt_word_rule_join(gt_word_type *p_gt)
Low-level reduction function.

Try to join current subwort p_gt->p_node with its predecessor. Return 1 and let p_gt->p_node point to first
node being changed if the rule could be applied. Return 0 and do not change p_gt->p_node this is not the case.
Return a negative number in case of a fatal error.

int32_t gt_word_rule_t_xi_t(gt_word_type *p_gt)
Low-level reduction function.

This function tries to apply a reduction rule:

𝜏𝑒1𝜉𝑒2𝜏𝑒3 → 𝜉𝑒4𝜏𝑒5𝜉𝑒6 .

Such a rule exists for all 0 < 𝑒1, 𝑒2, 𝑒3 < 3. This rule is applied to the subword p_gt->p_node and to its
predecessor. Applying such a rule decreases the number of generators 𝜏±1 in a word.
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The function returns 1 and lets p_gt->p_node point to first node being changed if such rule could be applied. It
returns 0 and does not change p_gt->p_node this is not the case. It returns a negative number in case of a fatal
error.

To show the existence of suitable reduction rules as mentioned above we put 𝑎 = 𝜏𝜉−1. Then we verify that 𝑎
has order 7 and that 𝜏−1𝑎𝜏 = 𝑎2 holds. Therefore is suffices to verify that the group operations corresponding
to these relations fix the ‘order vector’ in the representation 𝜌15 .

Since 𝜏 has order 3, the group generated by 𝜏 and 𝑎 (and hence also the group generated by 𝜏 and 𝜉) is visibly a
Frobenius group of order 21. Finding suitable reduction rules in such a group is easy.

int32_t gt_word_append(gt_word_type *p_gt, uint32_t *a, uint32_t n)
Append word of generators to strcture *p_gt

Append the word a of length n to the word in the buffer refered by p_gt.

A negative return value inducates an error.

At exit, pointer p_gt->p_node will point to the EOF mark.

uint32_t gt_word_n_subwords(uint32_t *a, uint32_t n)
Return number of subwords required to store element of the Monster.

Return (an upper bound for) the number of subwords in a doubly linked list of type gt_word_type required to
store the word of generators of the Monster of length n referred by a.

int32_t gt_word_length(gt_word_type *p_gt)
Return the length of the word stored in *p_gt.

int32_t gt_word_reduce(gt_word_type *p_gt)
Reduce the word stored in *p_gt.

The function reduces the word 𝑔 stored in the structure *p_gt. The mode of reduction depends on the parameter
mode passed to function gt_word_alloc when creating that structure. The function returns:

0 if 𝑔 is not known to be in any subgroup of the Monster

4 if 𝑔 is known to be in 𝐺𝑥0 ·𝑁0

5 if 𝑔 is known to be in 𝑁0

6 if 𝑔 is known to be in 𝐺𝑥0

7 if 𝑔 is known to be in 𝑁𝑥0 = 𝐺𝑥0 ∩𝑁0

A negative value in case of failure.

If the return value is > 0 (i.e. if we know 𝑔 ∈ 𝐺𝑥0 · 𝑁0) then we also have performed a full reduction of the
result.

int32_t gt_word_store(gt_word_type *p_gt, uint32_t *pa, uint32_t maxlen)
Store the word in *p_gt in an array.

The function stores the word in *p_gt in the array a (of length maxlen) referred by pa. It returns the actual
length nof the word stored in the array a.

The function returns a negative value in case of failure, e.g. if n > maxlen.

int32_t gt_word_to_mm_compress(gt_word_type *p_gt, mm_compress_type *p_c)
Compress word in *p_gt to strcuture of type mm_compress_type

Yet to be tested and documented!!!

3.6. Description of the mmgroup.mm_reduce extension 261



mmgroup, Release mmgroup v1.0.0

int32_t gt_word_compress(gt_word_type *p_gt, uint64_t *p_n)
Compress word in *p_gt to a 256-bit integer``.

Yet to be tested and documented!!!

int32_t gt_word_shorten(uint32_t *g, uint32_t n, uint32_t *g1, uint32_t n1max, uint32_t mode)
Reduce a word of generators of the Monster group.

Let 𝑔 be the word of the monster group of length n stored in the array g. The function reduces the word 𝑔 and
stores the reduced word in the buffer g1 of length n1max. It returns the actual length n1 of the reduced word.

Internally, the function uses a buffer of type gt_word_type for reduction. Parameter mode controls the reduction
mode; it is specified as in function gt_word_alloc.

The function returns a negative value in case of failure, e.g. if n1 > n1max.

3.6.7 C interface for file mm_compress.c

This file contains functions for compressing a word of generators of the Monster group to an integer.

TODO: Documentation yet missing!

Functions

void mm_compress_pc_init(mm_compress_type *pc, uint32_t back)
yet to be documented

int32_t mm_compress_pc_add_nx(mm_compress_type *pc, uint32_t *m, uint32_t len)
yet to be documented

int32_t mm_compress_pc_add_type2(mm_compress_type *pc, uint32_t c)
yet to be documented

int32_t mm_compress_pc_add_type4(mm_compress_type *pc, uint32_t c)
yet to be documented

int32_t mm_compress_pc_add_t(mm_compress_type *pc, uint32_t t)
yet to be documented

int32_t mm_compress_pc(mm_compress_type *pc, uint64_t *p_n)
yet to be documented

int32_t mm_compress_pc_expand_int(uint64_t *p_n, uint32_t *m)
yet to be documented

3.6.8 C interface for file mm_vector_v1_mod3.c

File mm_vector_v1_mod3 contains a precomuted vector v1_mod3 of the representation of the monster group (mod 3).
This vector can be used for obtaining an (unknown) element 𝑔 of the subgroup 𝐺𝑥0 of the monster from and image of
that vector under 𝑔.

So the functions in this module are similar to those in module mm_order.c, but faster.

Note that we cannot check membership in 𝐺𝑥0 with the functions in this module!

This module is yet a stub!!!
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Functions

void mm_order_load_vector_v1_mod3(uint_mmv_t *p_dest)
Load order vector from tables to a buffer.

The function stores the precomputed vector v1_mod3 into the array referred by p_dest. That array must must
be sufficiently long to store a vector of the representation 𝜌3.

int32_t mm_order_compare_v1_mod3(uint_mmv_t *v)
Compare vector with precomputed order vector.

The function compares the vector 𝑣 in the representation 𝜌3 of the monster group referred by v with 𝑣1 , where
𝑣1 is the precomute vector v1_mod3.

The function returns 0 in case of equality and 1 otherwise. It destroys the vector in the buffer v.

int32_t mm_order_find_Gx0_via_v1_mod3(uint_mmv_t *v, uint32_t *g)
Find an element 𝑔 of the subgroup 𝐺𝑥0.

Yet to be documented!!!

3.7 Shared libraries and dependencies between Cython extensions

For each Cython extension the relevant C functions are implemented in a shared library (or a DLL in Windows). Names
of the corresponding DLLs in windows are given in the following table:

Table 5: Shared libraries implementing Cython extensions

Cython extension Implemented in shared library
mm_reduce mmgroup_reduce
mm_op mmgroup_mm_op
clifford12 mmgroup_mat24
generators mmgroup_mat24
mat24 mmgroup_mat24

In Linux, the name of each shared library is prefixed by the string lib. So the Windows DLL mmgroup_mm_op.dll
corresponds to the Linux shared library libmmgroup_mm_op.so.

Cython extensions depend on each other as shown in the following paragraph:

mm_reduce
+ mm_op
+ clifford12
+ generators

+ mat24
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CHAPTER

FOUR

APPLICATIONS OF THE MMGROUP PACKAGE

4.1 Introduction

Some applications using the mmgroup package can be downloaded from the github repository

https://github.com/Martin-Seysen/mmgroup .

In that repository each application is stored in a subdirectory of directory applications.

The mmgroup package must be installed before running any of these applications, as described in the API reference
of this project.

4.2 Representing the Monster as a Hurwitz group

We want to find a presentation of the Monster as a Hurwitz group.

4.2.1 Description of the task to be done

Wilson [Wil01] has shown that the Monster group is a Hurwitz group, i.e. a group generated by two elements 𝑎, 𝑏
satisfying the relations 𝑎2 = 𝑏3 = (𝑎𝑏)7 = 1.

In a MathOverflow question is has been asked for the smallest possible order of the commutator [𝑎, 𝑏] = 𝑎−1𝑏−1𝑎𝑏 of
𝑎 and 𝑏 in such a presentation of the Monster, see

https://mathoverflow.net/q/363882 .

Using the implementation of the Monster group in the mmgroup project, it is now possible to find a non-trivial upper
bound for that commutator. The purpose of this application is to find generators 𝑎, 𝑏 of the Monster satisfying the
relations given above, so that we can compute the order of the commutator [𝑎, 𝑏].

In [Wil01] Wilson has given explicit generators 𝑎 (in class 2B) and 𝑏 (in class 3B) of the Monster satifying the relations
given above. It appears to be extremely difficult to translate these two generators from the language used in [Wil01] to
the language used in our mmgroup package. Since not all such pairs 𝑎, 𝑏 must be isomorphic (via conjugation), we also
want to find several such pairs. So we have to reimplement the search for such pairs here.

At the time of writing this document we have found 7 pairs of such generators 𝑎, 𝑏; and in both cases the commutator
[𝑎, 𝑏] has order 39. I thank Gabriel Goller in Augsburg, Germany for computing most of these pairs.

Python scripts referred in the following subsections can be found in subdirectory applications/Hurwitz of the
repository.
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4.2.2 Searching for pairs of generators

Let 𝐺𝑥0 be the subgroup of the Monster of structure 21+24.Co1 as defined in the API reference of this package, and
let 𝑧−1 be the central involution in that subgroup. Then for generating a pair 𝑎, 𝑏 as above, we put 𝑎 = 𝑧−1 . Then we
search for a random 𝑔3 ∈ 𝐺𝑥0 of order 3 with 𝜒1(𝑔3) = 53, so that 𝑔3 is in class 3B of the Monster. Here 𝜒1 is the
character of degree 196883 of the Monster. With the mmgroup package we can compute that character in much less
than a second. For a fixed 𝑔3 we generate a large number of (sufficiently) random elements 𝑔𝑒 of the Monster and we
put 𝑔 = 𝑔−1

𝑒 𝑔3𝑔𝑒. If 𝑧𝑔 has order 7 then (𝑎, 𝑏) = (𝑧, 𝑔) is a candidate for a pair of generators, and we store 𝑔3 and 𝑔𝑒
in a file for further processing.

The python script find_generators.py searches for pairs (𝑎, 𝑏) as above, and stores the corresponding elements
𝑔3, 𝑔𝑒 in file Hurwitz_order7.txt. Here for checking the order of 𝑎𝑏 we simply check that 𝑣 · (𝑎𝑏)7 = 𝑣 for a
random vector 𝑣 in the 196883-dimensional representation of the Monster modulo 3. This is by far the most time-
consuming computation in the whole application. Wilson [Wil01] reports a success rate of one over 64 millions for
finding a suitable pair. Using all CPUs of the authors’s computer, we can check about 12 million candidates per day,
so that our search has to run for about a week.

4.2.3 Verifying pairs of generators

Given a pair (𝑎, 𝑏) satisfying the relations 𝑎2 = 𝑏3 = (𝑎𝑏)7 = 1, we also have to verify that 𝑎 and 𝑏 actually generate
the Monster group and not just a proper subgroup of the Monster. Here the strategy in [Wil01] is to compute random
elements in the group ⟨𝑎, 𝑏⟩ generated by 𝑎 and 𝑏, until one finds an element ℎ1 of order 94 and an element ℎ2 or
order 41, 59, or 71. According to [Wil01], every proper subgroup of the Monster containing an element of order 94 is
contained in a maximal subgroup of structure 2.𝐵, where 𝐵 is the Baby Monster. But none of the primes 41, 59, or 71
divides the order of 𝐵; so ℎ1 and ℎ2 generate the Monster.

We compute a certificate for checking that 𝑎 and 𝑏 generate the Monster as follows. Put 𝐻(𝑎, 𝑏, 𝑛) =
∏︀63

𝑖=0 𝑎𝑏
1+𝜈𝑖 for

elements 𝑎, 𝑏 of the Monster, and an integer 0 ≤ 𝑛 < 264 with binary representation 𝑛 =
∑︀63

𝑖=0 𝜈𝑖 · 2𝑖, 𝜈𝑖 ∈ {0, 1}.
If 𝑎 and 𝑏 generate the Monster then we can effectively find integers 𝑛1, 𝑛2 such that 𝐻(𝑎, 𝑏, 𝑛1) has order 94 and
𝐻(𝑎, 𝑏, 𝑛2) has order 41, 59, or 71.

The script parse_found.py reads the file Hurwitz_order7.txt discussed in the previous section and checks if
pair of candidates in that file actually generates the Monster. If this is the case for a pair then it stores that pair plus
a certificate for that pair in a list in file hurwitz_monster_samples.py. Computing such a certificate take a few
minutes for a pair (𝑎, 𝑏) on the author’s computer, which is negligible compared to the effort for finding such a pair.

4.2.4 Using pairs of generators

For using a pair of generators of the Monster, the user may simply import the file hurwitz_monster_samples.py.
This file essentially contains a list of pairs of elements of the Monster, so that each of these pairs generates the Monster
as a Hurwitz group. That list also contains certificates for these pairs as discussed in the last section. A precomputed
file hurwitz_monster_samples.py containing (at least) two such pairs is stored in the git repository of the project.

The script hurwitz_verify.py checks all pairs (𝑎, 𝑏) contained in file hurwitz_monster_samples.py and displays
the order of the commutator [𝑎, 𝑏]. This activity takes just a few seconds for each pair.
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4.3 Mapping the Coxeter group 𝑌555 into the Bimonster

Sample programs dealing with the group 𝑌555 and the Bimonster

The implementation of the Coxeter group 𝑌555 and the Bimonster has now been integrated into the mmgroup project.
Documentation see The Coxeter group Y_{555} and the Bimonster in the API reference.

This directory now just contains a few tiny self-explaining applications of the implementation of 𝑌555 and the BiMon-
ster.

4.4 Computing standard generators of the Monster

This application computes standard generators of the Monster.

The standard generators (a, b) of the Monster satisfy the following properties:

a is in class 2A, b is in class 3B and ab has order 29,

see

https://brauer.maths.qmul.ac.uk/Atlas/v3/spor/M/

Function standard_generators in file stdgen.py in this application computes standard generators of the Monster
(if this has not yet been done) and stores them in the file standard_generators.py.
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CHAPTER

FIVE

DEMONSTRATION CODE FOR THE REDUCTION ALGORITHM

This chapter has been written for a mathematically-inclined reader who wants to read an implementation demonstrating
the reduction algorithm for the Monster group in [Sey22]. In this section we present a Python implementation of that
reduction algorithm. This implementation has been optimized for readability, and not for speed; but it can still be
executed and tested.

Our goal is present a satisfactory demonstration of the new reduction algorithm in this chapter of the project documen-
tation. Executable Python code can be found in the mmgoup.demo package. Function reduce_monster_element in
the mmgroup.demo.reduce_monster package actually reduces an element of the Monster.

Demonstrating every tiny detail of the reduction algorithm in Python leads to a bloated software package that is hardly
readable or executable. So we have to make a compromise, which parts of the reduction algorithm we want to demon-
strate.

Following the Pacific island model in [Wil13], we assume that computations in the subgroup 𝐺𝑥0 of the Monster (of
structure 21+24.Co1) are easy enough, so that demonstration code is not needed for them. The relevant computations
in 𝐺𝑥0 are described in detail in the appendices of [Sey22].

We also assume that functions for the operation of the Monster on its 196884-dimensional representation 𝜌15 (with
coefficients taken modulo 15) are available. This operation is described in detail in [Sey20]. In the mmgroup package
we use multiplication for that operation.

We also assume that functions performing linear algebra with matrices over the Leech lattice (modulo 2 and 3) are
available.

Section Subfunctions for the reduction algorithm describes the interface of functions implementing the tasks mentioned
above.

Warning: Functions and classes presented in Chapter Demonstration code for the reduction algorithm are for
demonstration only. They should not be used in a life application!

This demonstration makes some random choices in the reduction process. This is appropriate for testing. The life
implementation of the reduction algorithm is deterministic.
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5.1 Data structures

This section contains the data structures required for the demonstration of the reduction algorithm. These data structures
are classes that can be imported from module mmgroup.demo.

class mmgroup.demo.Mm(tag=None, atom=None, *args, **kwds)
Models an element of the Monster group

Here it would be tempting to use the class MM defined in the API reference of the mmgroup package for computing
in the Monster instead. Note that methods of class MM may apply the reduction algorithm whenever appropriate.
Hence it would be cheating to demonstrate the reduction algorithm with instances of that class.

So we use this class Mm for demonstrating the reduction algorithm for the Monster.

The constructor of the class Mm performs the same action as the constructor of class MM . The generators of the
Monster used here are discussed in [Sey22], Section 3 - 5.

But multiplication of instances of class Mm is simply a concatenation of words, without any attempt to reduce
the result.

We use the following special cases of calling the constructor:

Calling Mm(‘r’, k) constructs a random word in the generators of the Monster containing k triality elements
𝜏±1, for an integer k.

Calling the constructor with the string ‘negate_beta’ constructs an element of the normal subgroup 𝑄𝑥0 of the
subgroup 𝐺𝑥0 of the Monster that exchanges the axes 𝑣+ and 𝑣− defined in [Sey22], Section 7.2.

property count_triality_elements

Length of a word representing an element of the Monster

The function returns the number of the triality elements 𝜏±1 contained in the word representing the group
element. This will be used as an indication for the length of the word. This is similar to (although not equal
to) the definition of the length of a word in [Wil13].

class mmgroup.demo.MmV15(vector_name=0)
Models a vector in the representation of the Monster mod 15

The constructor constructs a vector in the representation of the Monster mod 15 depending on the parameter
vector_name passed as an argument. If vector_name is the string ‘v+’ or ‘v-’ then we construct the vector 𝑣+
or 𝑣− defined in [Sey22], Section 7.2, respectively.

If vector_name is the string ‘v1’ then the we construct a precomputed vector 𝑣1 satisfying the requirements in
[Sey22], Section 6. The computation of such a vector 𝑣1 is discussed in [Sey22], Appendix B.

Two such vectors in this class may be checked for equality. A vector may be multiplied with an element of the
Monster group. Other operations are not supported.

class mmgroup.demo.Leech2(value)
Models an vector in the Leech lattice mod 2

Such vectors may be added. A vector may be multiplied with an element of the subgroup 𝐺𝑥0 of the monster.

Calling the constructor with the string ‘Omega’ or ‘beta’ returns the vector 𝜆Ω or 𝜆𝛽 defined in [Sey22], Section
4.1 or 7.1, respectively.

Calling the constructor with an integer argument returns the element of the Leech lattice mod 2 with that number.
Here the numbering is as in class XLeech2, setting the sign bit to zero.
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property type

Return type of vector in Leech lattice mod 2.

The type of a vector is the halved norm of a shortest preimage of the vector in the Leech lattice. That type
is equal to 0, 2, 3, or 4.

5.2 The reduction algorithm for the Monster group

This module demonstrates the reduction algorithm for the Monster

The main function reduce_monster_element in this module reduces an element of the Monster group. Given an word
𝑔 of generators of the Monster of an arbitrary length, the function returns an word ℎ of generators of the Monster of
length at most 7, such that 𝑔 · ℎ is the neutral element of the Monster. Here the length of a word is is the number of
triality elements 𝜏±1 contained in that word.

Module mmgroup.demo.reduce_monster requires the following external references.

from mmgroup.demo import Mm, Leech2, MmV15
from mmgroup.demo.reduce_sub import *
from mmgroup.demo.reduce_axis import reduce_axis
from mmgroup.demo.reduce_feasible import reduce_feasible_axis

Here comes the main function reduce_monster_element of the module that reduces an element of the Monster group.

def reduce_monster_element(g):
r"""Reduce an element g of the Monster

:param g: Element of the Monster of arbitrary length
:type g: class Mm
:return: Element h of length at most 7 with g * h == 1
:rtype: class Mm
"""
# Compute h such that g * h is in the subgroup H^+ of the Monster
v_plus = MmV15('v+') * g
h = reduce_axis(v_plus) # Now g * h is in H^+
# Compute h such that g * h is in the subgroup H of G_x0
v_minus = MmV15('v-') * g * h
h = h * reduce_feasible_axis(v_minus) # Now g * h is in H
# Reduce the element g * h in the group G_x0
v_1 = MmV15('v1') * g * h
h = h * reduce_G_x0(v_1) # Now g * h is 1
return h

Here is a simple test function for testing the main function reduce_monster_element.

def check_reduce_monster_element():
r"""Generate a random element g of the Monster and test reduction of g
"""
g = Mm('r', 14) # Random Monster element g
assert g.count_triality_elements == 14 # Check length of g
h = reduce_monster_element(g) # Reduce g; the result is h
assert MmV15('v1') * g * h == MmV15('v1') # Check that g * h is 1
assert h.count_triality_elements <= 7 # Length of h must be <= 7
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The following function reduces an element of the subgroup 𝐺𝑥0 of the Monster. The implementation of this function
is discussed in [Sey22], Section 6.

def reduce_G_x0(v):
r"""Reduce an element g of the subgroup G_x0 of the Monster

:param v: Vector in representation of the Monster, see below
:type v: class MmV15
:return: Element g of G_x0 as defined below
:rtype: class Mm

Let v be a vector in the representation of the Monster
satisfying the conditition

v * g = MmV15('v1')

for an unknown element g of the group G_x0. The function computes
g if such an element g exists. Otherwise it raises an error.
"""
v2 = v.copy() # Local copy of v

# Compute kernel of the matrix corresponding to part 300_x of v;
# that kernel must contain a unique Leech lattice vector l2 of type 4
r3, l2 = mat15_rank_3(v2, 0)
assert r3 == 23 # Rank of 300_x must be 23

# Compute element g1 of G_x0 that transforms l2 to \lambda_\Omega
g1 = map_type4_to_Omega(l2)
v2 = v2 * g1 # Transform v2 with g1

# Now v2 * g2 = MmV15('v1') for a (uinque) element g2 of the group N_x0
g2 = find_in_Nx0(v2) # Finding g2 is easy
assert v * g1 * g2 == MmV15('v1') # This is what we expect
return g1 * g2

5.3 Reducing an axis in the Monster

Module mmgroup.demo.reduce_axis demonstrates the reduction of an axis

Here the axes are certain vectors in the representation 𝜌15 the Monster. The axes are in a one-to-one correspondence
with the left cosets of the subgroup 𝐻+ of structure 2.𝐵 of the Monster. Thus mapping an arbitrary axis v to the
standard axis 𝑣+ corresponding to the subgroup 𝐻+ is equivalent to mapping an element of the Monster to an element
of 𝐻+ by right multiplication. For background we refer to [Sey22], Section 7.

The process of finding an element 𝑔 that maps axis v to 𝑣+ is called reduction of the axis v. Function reduce_axis in
this module reduces an axis v.

We name an orbit of an axis under the action of the subgroup 𝐺𝑥0 by a string as in [Sey22], Section 8.2. In the sequel
an orbit of an axis means an orbit under the action of 𝐺𝑥0. Function axis_orbit in this module computes the orbit of
an axis.

For reducing an axis we first multiply an axis with a suitable element of 𝐺𝑥0 in order to obtain a ‘nice’ axis in the same
orbit. Roughly speaking, an axis is ‘nice’ if multiplication with a suitable power of the triality element 𝜏 of the Monster
maps that axis into a ‘simpler’ orbit.
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This way we may repeatedly multiply an axis first with an element of 𝐺𝑥0 and then with a power of 𝜏 , leading to a
‘simpler’ orbit in each step of the reduction process, as discussed in [Sey22], Section 8. Possible sequences of orbits
obtained during such a reduction process are shown in Figure 2 in [Sey22], Section 8.3.

For each axis v there is a set 𝑈4(v) of vectors in the Leech lattice mod 2 such that for any 𝑔 ∈ 𝐺𝑥0 the axis v𝑔 is ‘nice’,
if there is an 𝑙2 ∈ 𝑈4(v) with 𝑙2𝑔 = 𝜆Ω. For background we refer to [Sey22], Section 8.3. Function compute_U in
this module is used to compute the set 𝑈4(v). More precisely, calling compute_U(v) returns a set 𝑈(v) of vectors in
the Leech lattice mod 2; and 𝑈4(v) is the set of type-4 vectors contained in that set. Function map_type4_to_Omega
in module mmgroup.demo.reduce_sub computes 𝑔 from 𝑙2.

At the end of that process we obtain an axis in the orbit ‘2A’. That orbit also contains the axis 𝑣+. Mapping an arbitrary
axis in orbit ‘2A’ to the standard axis 𝑣+ is easy.

Module mmgroup.demo.reduce_axis requires the following external references.

from random import choice # returns a random entry of a list
from mmgroup.demo import Mm, Leech2, MmV15 # data strucures used
from mmgroup.demo.reduce_sub import * # functions used

Here is the implementation of function reduce_axis.

def reduce_axis(v):
r"""Return element of Monster reducing an axis v to the standard axis v^+

:param v: The axis to be reduced
:type v: class MmV15
:return: Element g of the Monster with v * g = v^+
:rtype: class Mm

Here v^+ is the standard axis.
"""
v1 = v.copy() # Local copy of axis v
g = Mm(1) # Neutral element of the Monster

# In g we will accumulate the element of the Monster that transforms v

# Map axis to a 'simpler' orbit; see documentation of the module
while True:

orbit = axis_orbit(v1) # Orbit of current axis v
if orbit == '2A':

break # Done if we are in orbit '2A'

# Compute the set U_4(v) and select a random element l2 of that set
U = compute_U(v1)
U_4 = [l2 for l2 in U if l2.type == 4]
l2 = choice(U_4) # A random element of U_4(v)

# Find a Monster element g1 that maps v1 to a 'nice' axis
# and map v1 to that 'nice' axis
g1 = map_type4_to_Omega(l2)
v1 = v1 * g1 # Transform v1 with g1
g = g * g1
assert v * g == v1 # Correctness condition for loop

# Find a Monster element g_tau that maps v1 to a 'simpler' axis,
(continues on next page)
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# and map v1 to that 'simpler' axis
target_orbits = TARGET_ORBITS[orbit] # possible 'simpler' orbits
g_tau = find_triality_element_for_axis(v1, target_orbits)
v1 = v1 * g_tau # Transform v1 with g_tau
g = g * g_tau
assert v * g == v1 # Correctness condition for loop

# Now axis v has been transformed to an axis v1 in orbit '2A'.
# Map the short Leech lattice vector l2 corresponding to axis v1
# to the standard short vector \lambda_\beta.
_, l2 = mat15_rank_3(v1, 2)
g1 = map_type2_to_standard(l2) # g1 transforms l2 to \lambda_\beta
v1 = v1 * g1 # Transform v1 with g1
g = g * g1

# Here Here v1 must be v^+ or v^-
assert v1 in [MmV15('v+'), MmV15('v-')]
if v1 != MmV15('v+'):

G_MINUS = Mm('negate_beta')
v1 = v1 * G_MINUS # Correct v1 if it is equal to v^-
g = g * G_MINUS

assert v * g == MmV15('v+') # This is what we expect
return g

Dictionary TARGET_ORBITS encodes the graph shown in Figure 2 in [Sey22], Section 8.3. The vertices of that
graph are orbits of axes.

TARGET_ORBITS = {
'2B' : ['2A'],
'4A' : ['2A'],
'4B' : ['2B'],
'4C' : ['2B'],
'6A' : ['4A'],
'6C' : ['4A'],
'6F' : ['4C'],
'8B' : ['4A'],
'10A' : ['6A'],
'10B' : ['4B', '4C'],
'12C' : ['4B', '6A'],
}

Here is the implementation of function axis_orbit. This function has been implemented according to the discussion
of the orbits of axes in [Sey22], Section 8.4.

def axis_orbit(v):
"""Compute the orbit of an axis

:param v: The axis to be checked
:type v: class MmV15
:return: Name of the orbit of axis v
:rtype: str
"""

(continues on next page)
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ORBITS_KNOWN_FROM_NORM = {
2:'8B', 3:'4C', 5:'6C', 10:'12C', 13:'4B'

}
assert isinstance(v, MmV15) and v.p == 15

# Compute norm of the 24 times 24 matrix 300_x contained in vector v (mod 15)
norm = mat15_norm(v)

if norm in ORBITS_KNOWN_FROM_NORM:
# If there is only one orbit with that norm, return that orbit
return ORBITS_KNOWN_FROM_NORM[norm]

elif norm == 4:
# If 300_x has norm 4 then compute the rank r3 of matrix
# M = 300_x - 2 * M_1, where M_1 is the unit matrix
r3, l2 = mat15_rank_3(v, 2)
if r3 == 23:

# If M has rank 23 then we check that the kernel of M
# contains a vector l2 of type 2 in Leech lattice
if l2.type == 2:

# Compute y = transposed(l2) * M * l2 (mod 15)
y = mat15_apply(v, l2)
if y == 4:

return '2A' # Orbit is '2A' if y == 4
elif y == 7:

return '6A' # Orbit is '6A' if y == 7
else:

raise ValueError("Vector is not an axis")
else:
raise ValueError("Vector is not an axis")

elif r3 == 2:
return '10A' # Orbit is '10A' if M has rank 2

else:
raise ValueError("Vector is not an axis")

elif norm == 8:
# If 300_x has norm 8 then compute rank r3 of matrix 300_x
r3, _, = mat15_rank_3(v, 0)
if r3 == 8:

return '2B' # Orbit is '2A' if rank is 8
elif r3 == 24:

return '10B' # Orbit is '10B' if rank is 24
else:

raise ValueError("Vector is not an axis")
elif norm == 14:

# If 300_x has norm 14 then compute rank r3 of matrix 300_x
r3, _, = mat15_rank_3(v, 0)
if r3 == 8:

return '6F' # Orbit is '6F' if rank is 8
elif r3 == 23:

return '4A' # Orbit is '4A' if rank is 23
else:

raise ValueError("Vector is not an axis")
else:

(continues on next page)
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raise ValueError("Vector is not an axis")

Here is the implementation of function compute_U. For an axis v the function computes the set U(v) of vectors in the
Leech lattice (mod 2) defined in [Sey22], Section 8.4. The implementation of the function is essentially a rewrite of
the discussion of the different cases of axis orbits in that section.

def compute_U(v):
"""Compute a set of Leech lattice vectors from an axis v

For a given axis v the function computes the set U(v) of
vectors in the Leech lattice mod 2, as defined above.

:param v: The axis v
:type v: class MmV15
:return: The set U(v) of vectors in the Leech lattice (mod 2)
:rtype: list[Leech2]
"""
assert isinstance(v, MmV15) and v.p == 15
orbit = axis_orbit(v) # Compute the orbit of axis v
if orbit == '2A':

return []
if orbit == '2B':

return leech2_span(vect15_S(v, 4))
if orbit == '4A':

_, l2 = mat15_rank_3(v, 0)
return [l2]

if orbit in ['4B','4C']:
return leech2_rad(vect15_S(v, 1))

if orbit == '6A':
_, l2 = mat15_rank_3(v, 2)
return [x + l2 for x in vect15_S(v, 5)]

if orbit == '6C':
return leech2_span(vect15_S(v, 3))

if orbit in ['6F', '12C']:
return leech2_rad(vect15_S(v, 7))

if orbit == '8B':
S1 = (vect15_S(v, 1))
l2 = choice(S1) # l2 is a random element of S1
return [l2 + x for x in S1]

if orbit == '10A':
S1 = (vect15_S(v, 1))
S3 = (vect15_S(v, 3))
l2 = S3[0] # S3 is a singleton here
return [l2 + x for x in S1]

if orbit == '10B':
return leech2_rad(vect15_S(v, 4))

raise ValueError('Unknown orbit')
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5.4 Reducing a feasible axis in the Baby Monster

Module mmgroup.demo.reduce_feasible: reduction of a feasible axis

Here the feasible axes are certain axes in the representation 𝜌15 of the Monster, see [Sey22], Section 9.1 for details.
They are in a one-to-one correspondence with the left cosets of the subgroup 𝐻 = 𝐺𝑥0∩𝐻+ in the group 𝐻+ defined
in [Sey22].

Thus mapping an arbitrary feasible axis v to the standard feasible axis 𝑣− corresponding to the subgroup𝐻 is equivalent
to mapping an element of 𝐻+ to an element of 𝐻 by right multiplication.

The process of finding an element 𝑔 in 𝐻+ that maps a feasible axis v to 𝑣− is called reduction of the feasible axis v.
Function reduce_feasible_axis in this module reduces a feasible axis v.

The algorithm in function reduce_feasible_axis for reducing a feasible axis is discussed in [Sey22], Section 9. This
algorithm is quite similar to the algorithm in function reduce_axis for reducing a general axis. Analogies between
these two algorithms are summarized in Table 2 in that section.

An orbit of 𝐻+ under the action of 𝐻 will be called a 𝐻-orbit. As in function reduce_axis, we repeatedly multiply
a feasible axis first with an element of 𝐻 and then with a power of 𝜏 . This way we will map the axis into a ‘simpler’
𝐻-orbit in each step of the reduction process.

Details of that reduction process are discussed in [Sey22], Section 9. Possible sequences of 𝐻-orbits obtained during
such a reduction process are shown in Figure 3 in that section.

An orbit of the Monster under the action of 𝐺𝑥0 will be called a 𝐺-orbit. Note that disjoint 𝐻-orbits lie in disjoint
𝐺-orbits, with the following exceptions. 𝐻-orbits ‘2A0’ and ‘2A1’ are in 𝐺-orbit ‘2A’; and 𝐻-orbits ‘2B0’ and ‘2B1’
are in 𝐺-orbit ‘2B’.

The reduction process mentioned above terminates if the feasible axis is in the 𝐻-orbit ‘2A0’ or ‘2A1’. Orbit ‘2A1’
is the singleton {𝑣−}, so that we are done in that case. Transforming a feasible axis from orbit ‘2A0’ to orbit ‘2A1’ is
easy.

Module mmgroup.demo.reduce_feasible requires the following external references.

from mmgroup.demo import Mm, Leech2, MmV15
from mmgroup.demo.reduce_axis import axis_orbit
from mmgroup.demo.reduce_axis import compute_U
from mmgroup.demo.reduce_axis import TARGET_ORBITS
from mmgroup.demo.reduce_sub import*

Here is the implementation of function reduce_feasible_axis.

def reduce_feasible_axis(v):
r"""Return element of Monster reducing a feasible axis v

Here reducing a feasible axis means reduction to the
standard feasible axis v^-.

:param v: The feasible axis to be reduced
:type v: class MmV15
:return: Element g of subgroup H^+ of the Monster with v * g = v^-
:rtype: class Mm
"""
BETA = Leech2('beta') # Vector \lambda_\beta in leech lattice mod 2
OMEGA = Leech2('Omega') # Vector \lambda_\Omega in leech lattice mod 2
v1 = v.copy() # Local copy of the feasible axis v

(continues on next page)
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g = Mm(1) # Neutral element of the Monster

# In g we will accumulate the element of H^+ that transforms v

# Map axis to a 'simpler' orbit
while True:

orbit = axis_orbit(v1)
if orbit == '2A': # Done if we are in orbit '2A1' or '2A0'

break

# Compute the set U_f(v), as defined in [Sey22], Section 9.2;
# and select a random element l2 of that set
U = compute_U(v1)
U_f = [

l2 + BETA for l2 in U if
l2.type == 4 and (l2 + BETA).type == 2

]
l2 = choice(U_f) # A random element of U_f(v)

# Find a Monster element g1 that maps v1 to a 'nice' axis
# and map v1 to that 'nice' (feasible) axis
g1 = map_feasible_type2_to_standard(l2)
v1 = v1 * g1 # Transform v1 with g1
g = g * g1
assert v * g == v1 # Correctness condition for loop

# Find a Monster element g_tau that maps v1 to a 'simpler' axis,
# and map v1 to that 'simpler' (feasible) axis
target_orbits = TARGET_ORBITS[orbit]
g_tau = find_triality_element_for_axis(v1, target_orbits)
v1 = v1 * g_tau # Transform v1 with g_tau
g = g * g_tau
assert v * g == v1 # Correctness condition for loop

# Now v has been transformed to an axis v1 in orbit '2A0' or '2A1'.
# Compute the short Leech lattice vector l2 = \lambda(ax(v2)).
_, l2 = mat15_rank_3(v1, 2)

if l2 == BETA:
# If l2 is \lambda_beta then v1 is in orbit '2A1' and we are done
assert v * g == MmV15('v-') # This is what we expect
return g

# Map v1 to an axis with \lambda(ax(v1)) = \lambda\beta + \lambda\Omega
g1 = map_feasible_type2_to_standard(l2)
g = g * g1
v1 = v1 * g1 # Transform v1 with g1

# Now a power of the triality element maps v1 to the
# standard feasible axis v^-
for e in [1, -1]:

(continues on next page)
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v2 = v1 * Mm('t', e)
if v2 == MmV15('v-'):

g = g * Mm('t', e)
assert v * g == MmV15('v-') # This is what we expect
return g

raise ValueError("Vector is not a feasible axis")

5.5 Subfunctions for the reduction algorithm

The Python module mmgroup.demo.reduce_sub contains auxiliary functions required for the reduction on an element
of the Monster group.

Most functions in this module correspond to functions defined in [Sey22]. Cross references are given in the documen-
tation of a function.

Implementations of the functions in this module are usually just Python wrappers for the corresponding C functions in
the mmgroup package.

mmgroup.demo.reduce_sub.mat15_norm(v)
Compute norm of a matrix related to a vector in 𝜌15

Parameters
v (class MmV15) – vector in representation 𝜌15 of the Monster

Let 𝐴 be the 24 times 24 matrix corresponding to part 300𝑥 of vector v. The function returns the norm of the
matrix 𝐴 (reduced mod 15).

Returns
Norm of matrix 𝐴 (mod 15)

Return type
int

This corresponds to computing ||𝑀(𝑣)|| (mod 15) in [Sey22], Section 8.2.

mmgroup.demo.reduce_sub.mat15_apply(v, l2)
Apply matrix related to a vector in 𝜌15 to Leech lattice vector

Parameters

• v (class MmV15) – vector in representation 𝜌15 of the Monster

• l2 (class Leech2) – vector in the Leech lattice mod 2 of type 2

Let 𝐴 be the 24 times 24 matrix corresponding to part 300𝑥 of vector v.

The function returns 𝑙2𝐴𝑙⊤2 (reduced mod 15), where 𝑙2 is any preimage of l2 in the Leech lattice.

Returns
𝑙2𝐴𝑙⊤2 (mod 15)

Return type
int

This corresponds to computing 𝑀(𝑣, 𝑙2) (mod 15) in [Sey22], Section 8.3.
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mmgroup.demo.reduce_sub.mat15_rank_3(v, k)
Compute rank of a matrix related to a vector in 𝜌15

Parameters

• v (class MmV15) – vector in representation 𝜌15 of the Monster

• k (int) – scalar factor for the 24 times 24 unit matrix

Let 𝐴 be the 24 times 24 matrix corresponding to part 300𝑥 of vector v. Let 𝐴𝑘 be the matrix 𝐴 minus k times
the unit matrix, with coefficients taken modulo 3. Matrix 𝐴𝑘 has a natural interpretation as a matrix acting on
the Leech lattice (mod 3).

Returns
tuple(r, l2) with r the rank of the matrix 𝐴𝑘

Return type
tuple(int, class Leech2)

If the kernel of 𝐴𝑘 is one-dimensional and its preimage in the Leech lattice contains a nonzero vector l3 of type
at most 4 then we let l2 be the (unique) vector in the Leech lattice mod 2 with l2 = l3 (mod 2). Otherwise we put
l2 = None.

This corresponds to computing the pair (rank3(𝑣, 𝑘), 𝑙2), as defined in [Sey22], Section 8.3, with 𝑙2 ∈ ker3(𝑣, 𝑘)
if the conditions mentioned above are satisfied.

mmgroup.demo.reduce_sub.vect15_S(v, k)
Compute Leech lattice vectors related to a vector in 𝜌15

Parameters

• v (class MmV15) – vector in representation 𝜌15 of the Monster

• k (int) – a number 0 < k < 8

The basis vectors of part 98280𝑥 of v are in one-to-one correspondence with the shortest nonzero vectors of the
Leech lattice, up to sign. The function returns the list of short Leech lattice vectors such that the corresponding
co-ordinate of (part 98280𝑥 of) v has absolute value k (modulo 15).

Returns
List of short Leech lattice vectors as described above

Return type
list[class Leech2]

This corresponds to computing 𝑆𝑘(𝑣) in [Sey22], Section 8.3.

mmgroup.demo.reduce_sub.leech2_span(l2_list)
List vectors in a subspace of the Leech lattice modulo 2

Parameters
l2_list (list[class Leech2]) – List of vectors in the Leech lattice mod 2

The function returns the list of all vectors in the Leech lattice mod 2 that are in the subspace spanned by the
vectors in the list l2_list.

Returns
List of short Leech lattice vectors as described above

Return type
list[class Leech2]

This corresponds to computing the set span(𝑆), as defined in [Sey22], Section 8.3, where 𝑆 is the set of vectors
given by the list l2_list.
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mmgroup.demo.reduce_sub.leech2_rad(l2_list)
List vectors in a subspace of the Leech lattice modulo 2

Parameters
l2_list (list[class Leech2]) – List of vectors in the Leech lattice mod 2

The function returns the list of all vectors in the Leech lattice mod 2 that are in the radical of the subspace spanned
by the vectors in the list l2_list. The radical of a subspace is the intersection of that subspace with its orthogonal
complement.

Returns
List of short Leech lattice vectors as described above

Return type
list[class Leech2]

This corresponds to computing the set rad(𝑆), as defined in [Sey22], Section 8.3, where 𝑆 is the set of vectors
given by the list l2_list.

mmgroup.demo.reduce_sub.map_type4_to_Omega(l2)
Map a type-4 vector in the Leech lattice mod 2 to 𝜆Ω

Parameters
l2 (class Leech2) – Vector of type 4 in the Leech lattice mod 2

The function returns an element 𝑔 of the group 𝐺𝑥0 that maps the vector l2 of type 4 in the Leech lattice mod 2
to the standard type-4 vector 𝜆Ω.

Returns
group element 𝑔 mapping l2 to 𝜆Ω

Return type
class Mm

An implementation of this function is discussed in [Sey22], Appendix A.

mmgroup.demo.reduce_sub.map_type2_to_standard(l2)
Map a type-2 vector in Leech lattice mod 2 to 𝜆𝛽

Parameters
l2 (class Leech2) – Vector of type 2 in the Leech lattice mod 2

The function returns an element 𝑔 of the group 𝐺𝑥0 that maps the vector l2 of type 2 in the Leech lattice mod 2
to the standard type-2 vector 𝜆𝛽 .

Returns
group element 𝑔 mapping l2 to 𝜆𝛽

Return type
class Mm

An implementation of this function is discussed in [Sey22], Appendix C.

mmgroup.demo.reduce_sub.map_feasible_type2_to_standard(l2)
Map a feasible type-2 vector in the Leech lattice mod 2 to 𝜆𝛽 + 𝜆Ω

Parameters
l2 (class Leech2) – Feasible vector of type 2 in the Leech lattice mod 2

The function returns an element 𝑔 of the group 𝐺𝑥0 that maps the feasible vector l2 of type 2 in the Leech lattice
mod 2 to the standard feasible type-2 vector 𝜆Ω + 𝜆𝛽 . Here the term feasible is defined in [Sey22], Section 9.1.

Returns
group element 𝑔 mapping l2 to 𝜆𝛽 + 𝜆Ω
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Return type
class Mm

An implementation of this function is discussed in [Sey22], Appendix D.

mmgroup.demo.reduce_sub.find_triality_element_for_axis(v, axis_orbits)
Try to transform an axis in 𝜌15 into a given axis orbit

Parameters

• v (class MmV15) – an axis in the representation 𝜌15 of the Monster

• axis_orbits (list[str]) – List of expected types of the transformed axis

Let 𝑣 be the axis given by v. The function computes the axes 𝑣 · 𝜏𝑒 for 𝑒 = ±1, where 𝜏 is the triality element
in the Monster.

If possible, the function returns an element 𝜏𝑒, 𝑒 = ±1 such that the type of the axis 𝑣 ·𝜏𝑒 is in the list axis_orbits
of axis types. Names of axis types are as in [Sey22], Section 8.2.

The function raises ValueError if this is not possible. It does not change the axis stored in v.

Returns
An element 𝜏𝑒 of the Monster as described above

Return type
class Mm

Using function axis_orbit in module mmgroup.demo.reduce_axis this function can be implemented as follows:

def find_triality_element_for_axis(v, axis_orbits)
for e in [1, -1]:

if axis_orbit(v * Mm('t', e)) in axis_orbits:
return Mm('t', e)

raise ValueError

The implementation used here is much faster, since it computes fewer co-ordinates of the transformed axes.

mmgroup.demo.reduce_sub.find_in_Nx0(v)
Identify an element of the subgroup 𝑁𝑥0 of the Monster

Parameters
v (class MmV15) – vector in representation 𝜌15 of the Monster

Let 𝑣1 be the precomputed vector in 𝜌15 defined in the constructor of class MmV15. Vector v must be an image of
𝑣1 under an element of the subgroup 𝑁𝑥0 of the Monster. Then the function returns an element 𝑔 of 𝑁𝑥0 with
v𝑔 = 𝑣1, if such an element 𝑔 exists. Otherwise it raises ValueError. Note that at most one element 𝑔 of the
Monster may satisfy that condition.

Returns
An element 𝑔 of the Monster as described above

Return type
class Mm

An implementation of this identification of an element of the group 𝑁𝑥0 is described in [Sey22], Section 6. The
precomputed vector 𝑣1 satisfies the conditions stated in the same section.
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mm_group_n_mul_t (C++ function), 150
mm_group_n_mul_word_scan (C++ function), 151
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mm_group_n_to_word (C++ function), 152
mm_group_n_to_word_std (C++ function), 152
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module, 72
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module, 69
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module, 72

mmgroup.bimm.readme
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MMGROUP_ATOM_TAG_::MMGROUP_ATOM_TAG_1 (C++

enumerator), 148
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applications.StandardGenerators.stdgen,
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applications.Y555.readme, 267
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mul_exp() (mmgroup.MMVector method), 41
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O
octad (mmgroup.GCode property), 5
octad (mmgroup.GcVector property), 7
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ord (mmgroup.bimm.P3_node property), 69
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order() (mmgroup.bimm.AutP3 method), 71
order() (mmgroup.bimm.BiMM method), 73
order() (mmgroup.MM method), 32
order() (mmgroup.structures.qs_matrix.QStateMatrix

method), 61
order() (mmgroup.structures.xsp2_co1.Xsp2_Co1

method), 67
order_vector() (in module mmgroup), 43

P
P3_BiMM() (in module mmgroup.bimm), 73
P3_incidence() (in module mmgroup.bimm), 71
P3_incidences() (in module mmgroup.bimm), 71
P3_is_collinear() (in module mmgroup.bimm), 71
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Parity (class in mmgroup), 10
parity (mmgroup.AutPL property), 20
parity (mmgroup.Cocode property), 9
parity_class (mmgroup.PLoop attribute), 13
pauli_conjugate() (mm-

group.structures.qs_matrix.QStateMatrix
method), 62

pauli_vector() (mm-
group.structures.qs_matrix.QStateMatrix
method), 62

perm (mmgroup.AutPL property), 20
perm_num (mmgroup.AutPL property), 20
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PLoopZ() (in module mmgroup), 13
point_map() (mmgroup.bimm.AutP3 method), 71
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projection() (mmgroup.MMVector method), 41
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Q
qs_unit_matrix() (in module mm-
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qstate12_abs (C++ function), 182
qstate12_check (C++ function), 180
qstate12_check_reduced (C++ function), 183
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qstate12_compare_signs (C++ function), 187
qstate12_complex (C++ function), 186
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qstate12_pauli_vector_mul (C++ function), 191
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qstate12_type::factor (C++ member), 175
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reduce() (mmgroup.MM method), 32
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method), 62
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method), 62
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method), 63
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method), 63

S
shape (mmgroup.structures.qs_matrix.QStateMatrix

property), 63
show() (mmgroup.structures.qs_matrix.QStateMatrix

method), 63
sign (mmgroup.PLoop property), 13
sign (mmgroup.XLeech2 property), 23
snippet() (mmgroup.dev.mm_basics.mm_basics.MM_Const

method), 243
split() (mmgroup.GCode method), 5
split() (mmgroup.PLoop method), 13
split() (mmgroup.XLeech2 method), 23
split_octad() (mmgroup.GCode method), 5
split_octad() (mmgroup.PLoop method), 13
str() (mmgroup.XLeech2 method), 23
SubOctad() (in module mmgroup), 15
subtype (mmgroup.structures.xsp2_co1.Xsp2_Co1

property), 67
subtype (mmgroup.XLeech2 property), 23
sumup() (mmgroup.structures.qs_matrix.QStateMatrix

method), 63
syndrome() (mmgroup.Cocode method), 9
syndrome() (mmgroup.GcVector method), 7
syndrome_list() (mmgroup.Cocode method), 10
syndrome_list() (mmgroup.GcVector method), 7
syndromes_llist() (mmgroup.Cocode method), 10
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tag_offsets::OFS_TAG_SIGN (C++ enumerator), 251
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tor), 250
theta() (mmgroup.GCode method), 5
to_symplectic() (mm-

group.structures.qs_matrix.QStateMatrix
method), 64

trace() (mmgroup.structures.qs_matrix.QStateMatrix
method), 64

tuple_to_index() (mmgroup.MMSpace class method),
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type (mmgroup.demo.Leech2 property), 270
type (mmgroup.XLeech2 property), 23
type_Q_x0() (mmgroup.structures.xsp2_co1.Xsp2_Co1

method), 67

U
uint64_bit_len (C++ function), 176
uint64_bit_weight (C++ function), 176
uint64_low_bit (C++ function), 176
uint64_parity (C++ function), 176
uint64_to_bitarray (C++ function), 176
uint_mmv_t (C++ type), 220
UserDirective (class in mmgroup.generate_c), 112
UserFormat (class in mmgroup.generate_c), 113

V
vect15_S() (in module mmgroup.demo.reduce_sub),

280
vector (mmgroup.GCode property), 6
vector (mmgroup.GcVector property), 8
vector_tuple() (mmgroup.XLeech2 method), 23

X
xch_bits() (mmgroup.structures.qs_matrix.QStateMatrix

method), 64
XLeech2 (class in mmgroup), 21
Xsp2_Co1 (class in mmgroup.structures.xsp2_co1), 66
xsp2co1_chain_short_3 (C++ function), 196
xsp2co1_check_word_g_x0 (C++ function), 202
xsp2co1_Co1_get_mapping (C++ function), 216
xsp2co1_Co1_matrix_to_word (C++ function), 217
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xsp2co1_conj_elem (C++ function), 198
xsp2co1_conjugate_elem (C++ function), 203
xsp2co1_copy_elem (C++ function), 197
xsp2co1_elem_check_fix_short (C++ function), 198
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213
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tion), 213
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